In this paper, affecting parameters of porous medium to improve the rate of convective heat transfer in a two-dimensional porous gas heat exchanger (PGHE) for two arrangements (symmetric and asymmetric) of barriers are numerically investigated. Two barriers have been located on the top and bottom walls and one obstacle was placed in the central zone of the PGHE. In the present study, solving the momentum and energy equations has been done by Lattice–Boltzmann method with multiple-relaxation-time (LBM-MRT). The boundary conditions in both arrangements include the left and right walls which are kept at the cold constant temperature and both top and bottom walls are insulated. There is a volumetric heat source within the PGHE. The temperature of barriers and fixed obstacle are kept at hot temperature. In this study, impact of effective parameters in porous medium and heat transfer including dimensionless number of Darcy, porosity, and Rayleigh number on the flow and temperature fields has been investigated. According to the numerical results, it has been shown that the porous medium and barriers cause increase and improvement in the heat transfer within PGHE in both symmetrical and asymmetrical arrangements. The results also demonstrate that as dimensionless Darcy number increases, more convection occurs within the chamber. Examining arrangement of barriers shows that in asymmetrical arrangement, more space appears in chamber and convective heat transfer is done better.

References

1.
Teamah
,
M. A.
,
El-Maghlany
,
W. M.
, and
KhairatDawood
,
M. M.
,
2011
, “
Numerical Simulation of Laminar Forced Convection in Horizontal Pipe Partially or Completely Filled With Porous Material
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1512
1522
.
2.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Method for Hydrodynamics and Beyond
,
Clarendon Press
,
Oxford, UK
.
3.
Nazari
,
M.
,
Mohebbi
,
R.
, and
Keyhani
,
M. H.
,
2014
, “
Power-Law Fluid Flow and Heat Transfer in a Channel With a Built-In Porous Square Cylinder: Lattice Boltzmann Simulation
,”
J. Non-Newtonian Fluid Mech.
,
204
, pp.
38
49
.
4.
Alazmi
,
B.
, and
Vafai
,
K.
,
2002
, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Non-Equilibrium Condition
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3071
3087
.
5.
Leong
,
K. C.
,
Li
,
H. Y.
,
Jin
,
L. W.
, and
Chai
,
J. C.
,
2010
, “
Numerical and Experimental Study of Forced Convection in Graphite Foams of Different Configurations
,”
Appl. Therm. Eng.
,
30
(
5
), pp.
520
532
.
6.
Zhao
,
C.
,
Dai
,
L. N.
, and
Tang
,
G. H.
,
2010
, “
Numerical Study of Natural Convection in Porous Media (Metals) Using Lattice Boltzmann Method (LBM)
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
925
934
.
7.
Li
,
H. Y.
,
Leong
,
K. C.
,
Jin
,
L. W.
, and
Chai
,
J. C.
,
2010
, “
Analysis of Fluid Flow and Heat Transfer in a Channel With Staggered Porous Blocks
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
950
962
.
8.
Guo
,
Z.
, and
Zhao
,
T. S.
,
2002
, “
Lattice Boltzmann Model for Incompressible Flows Through Porous Media
,”
Phys. Rev.
,
66
(
3
), pp.
363
372
.
9.
Lallemand
,
P.
, and
Luo
,
L. S.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev.
,
69
(
6
), pp.
6546
6562
.
10.
Keshtkar
,
M. M.
,
2016
, “
Numerical Simulation of Fluid Flow in Random Granular Porous Media Using Lattice Boltzmann Method
,”
Int. J. Adv. Des. Manuf. Technol.
,
9
(
2
), pp.
31
42
.http://admt.iaumajlesi.ac.ir/article_534977.html
11.
Keshtkar
,
M. M.
, and
Amiri
,
B.
,
2017
, “
Numerical Simulation of Radiative-Conductive Heat Transfer in an Enclosure With an Isotherm Obstacle
,”
Heat Transfer Eng.
,
38
(
18
), pp.
91
103
.
12.
Atia
,
A. M.
, and
Mohammedi
,
K.
,
2015
, “
Thermal Lattice Boltzmann Model for Natural Convection in an Inclined Cavity Packed With Porous Material
,”
J. Control Sci. Eng.
,
3
(
2
), pp.
102
108
.
13.
Liu
,
Q.
,
Ya-Ling
,
H.
,
Qing
,
L.
, and
Tao
,
W.-Q.
,
2014
, “
A Multiple-Relaxation-Time Lattice Boltzmann Model for Convection Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
73
, pp.
761
775
.
14.
Kumar
,
A. P.
, and
Arul
,
P.
,
2014
, “
A Numerical Study on Natural Convection and Entropy Generation in a Porous Enclosure With Heat Sources
,”
Int. J. Heat Mass Transfer
,
69
, pp.
390
407
.
15.
Ezzatabadipour
,
M.
,
Zahedi
,
H.
, and
Keshtkar
,
M. M.
,
2017
, “
Fluid Flow Simulation in Random Elliptical Porous Media Using Lattice Boltzmann Method Considering Curved Boundary Conditions
,”
J. Appl. Mech. Tech. Phys.
,
58
(
3
), pp.
379
385
.
16.
Zeedadadi
,
S.
, and
Keshtkar
,
M. M.
,
2017
, “
Entropy Generation Analysis of Natural Convection in Square Enclosures With Two Isoflux Heat Sources
,”
J. Eng., Technol. Appl. Sci. Res.
,
7
(
2
), pp.
1482
1486
.http://etasr.com/index.php/ETASR/article/view/809
17.
Ghazanfari
,
M.
, and
Keshtkar
,
M. M.
,
2017
, “
Numerical Investigation of Fluid Flow and Heat Transfer Inside a 2D Enclosure With Three Hot Obstacles on the Ramp Under the Influence of a Magnetic Field
,”
J. Eng., Technol. Appl. Sci. Res.
,
7
(
3
), pp.
1647
1657
. http://etasr.com/index.php/ETASR/article/view/1115
18.
Keshtkar
,
M. M.
, and
Talbizadeh
,
P.
,
2017
, “
Investigation of Transient Conduction-Radiation Heat Transfer in a Square Cavity Using Combination of LBM and FVM
,”
J. Sadhana
,
43
, pp.
61
73
.
19.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
, 3rd ed.,
Springer
,
New York
.
20.
Beckermann
,
C.
,
Viskanta
,
R.
, and
Ramadhyani
,
S.
,
1988
, “
Natural Convection in Vertical Enclosures Containing Simultaneously Fluid and Porous Layers
,”
J. Fluid Mech.
,
186
(
1
), pp.
275
284
.
21.
Li
,
Q.
,
He
,
Y. L.
,
Wang
,
Y.
, and
Tao
,
W. Q.
,
2007
, “
Coupled Double-Distribution-Function Lattice Boltzmann Method for the Compressible Navier-Stokes Equations
,”
Phys. Rev.
,
76
(
5
), p. 056705.
22.
He
,
Y. L.
,
Wang
,
Y.
, and
Li
,
Q.
,
2009
,
Lattice Boltzmann Method: Theory and Applications
,
Science Press
,
Beijing, China
.
23.
Hsu
,
C. T.
, and
Cheng
,
P.
,
1990
, “
Thermal Dispersion in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
33
(
8
), pp.
1587
1597
.
24.
Succi
,
S.
,
2008
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Clarendon Press, Gloucestershire, UK
.
25.
Hortmann
,
M.
,
Perić
,
M.
, and
Scheuerer
,
G.
,
1990
, “
Finite Volume Multigrid Prediction of Laminar Natural Convection: Bench-Mark Solutions
,”
Int. J. Numer. Methods Fluids
,
11
(
2
), pp.
189
207
.
26.
Khanafer
,
K. M.
, and
Chamkha
,
A. J.
,
1998
, “
Hydromagnetic Natural Convection From an Inclined Porous Square Enclosure With Heat Generation
,”
Numer. Heat Transfer
,
33
(
8
), pp.
891
910
.
27.
Jue
,
T. C.
,
2003
, “
Analysis of Thermal Convection in a Fluid-Saturated Porous Cavity With Internal Heat Generation
,”
Heat Mass Transfer
,
40
(
1–2
), pp.
83
89
.
28.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice-Gas Automata for the Navier–Stokes Equation
,”
Phys. Rev.
,
56
(
14
), p. 1505.
29.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mechanic
,
30
(
1
), pp.
349
364
.
30.
Gan
,
Y.
,
Xu
,
A.
,
Zhang
,
G.
, and
Li
,
Y.
,
2011
, “
Lattice Boltzmann Study on Kelvin-Helmholtz Instability: Roles of Velocity and Density Gradients
,”
Phys. Rev.
,
83
(
5
), p. 056704.
31.
Succi
,
S.
,
Foti
,
E.
, and
Higuera
,
F.
,
1989
, “
Three-Dimensional Flows in Complex Geometries With the Lattice Boltzmann Method
,”
Europhys. Lett.
,
10
(
5
), pp.
65
76
.
32.
Tang
,
G. H.
,
Tao
,
W. Q.
, and
He
,
Y. L.
,
2005
, “
Gas Slippage Effect on Microscale Porous Flow Using the Lattice Boltzmann Method
,”
Phys. Rev.
,
72
(
5
), p.
056301
.
33.
Kang
,
Q.
,
Lichtner
,
P. C.
, and
Zhang
,
D.
,
2007
, “
An Improved Lattice Boltzmann Model for Multicomponent Reactive Transport in Porous Media at the Pore Scale
,”
Water Resour. Res.
,
43
(
12
), pp.
45
53
.
You do not currently have access to this content.