Abstract

This paper addresses whether synergistic interaction or additive behavior govern the co-combustion characteristics of lignite and biochars produced from hybrid poplar (HP), ash tree (AT), and rhododendron (RH). The biochars were blended with lignite and the burning behavior was investigated by thermal analysis. Upon carbonization, fundamental change occurred in the burning mechanisms of biomass from homogeneous to heterogeneous reactions. Blending the lignite with biochars led to improvement in the calorific value and reductions in the ash yield. Carbonization limited the high reactivity of biomass, and the reactivities of biochars became closer to the lignite's reactivity, consequently they burned in accord without segregation.

References

1.
Kubacki
,
M. L.
,
Ross
,
A. B.
,
Jones
,
J. M.
, and
Williams
,
A.
,
2012
, “
Small-Scale Co-Utilisation of Coal and Biomass
,”
Fuel
,
101
, pp.
84
89
.
2.
Hu
,
J.
,
Shao
,
J.
,
Yang
,
H.
,
Lin
,
G.
,
Chen
,
Y.
,
Wang
,
X.
,
Zhang
,
W.
, and
Chen
,
H.
,
2017
, “
Co-Gasification of Coal and Biomass: Synergy, Characterization and Reactivity of the Residual Char
,”
Bioresour. Technol.
,
244
(
Pt 1
), pp.
1
7
.
3.
Zhang
,
Y.
,
Geng
,
P.
, and
Liu
,
R.
,
2017
, “
Synergistic Combination of Biomass Torrefaction and Co-Gasification: Reactivity Studies
,”
Bioresour. Technol.
,
245
, pp.
225
233
.
4.
Park
,
D. K.
,
Kim
,
S. D.
,
Lee
,
S. H.
, and
Lee
,
J. G.
,
2010
, “
Co-Pyrolysis Characteristics of Sawdust and Coal Blend in TGA and Fixed Bed Reactor
,”
Bioresour. Technol.
,
101
(
15
), pp.
6151
6156
.
5.
Valdes
,
C. F.
,
Chejne
,
F.
,
Marrugo
,
G.
,
Macias
,
R. J.
,
Gomez
,
C. A.
, and
Montoya
,
J. I.
,
2016
, “
Co-Gasification of Sub-Bituminous Coal With Palm Kernel Shell in Fluidized Bed Coupled to a Ceramic Industry Process
,”
Appl. Therm. Eng.
,
107
, pp.
1201
1209
.
6.
Oladejo
,
J. M.
,
Adegbite
,
S.
,
Pang
,
C. H.
,
Liu
,
H.
,
Parvez
,
A. M.
, and
Wu
,
T.
,
2017
, “
A Novel Index for the Study of Synergistic Effects During the Co-Processing of Coal and Biomass
,”
Appl. Energy
,
188
, pp.
215
225
.
7.
Masnadi
,
M. S.
,
Habibi
,
R.
,
Kopyscinski
,
J.
,
Hill
,
J. M.
,
Bi
,
X.
,
Lim
,
C. J.
,
Ellis
,
N.
, and
Grace
,
J. R.
,
2014
, “
Fuel Characterization and Co-Pyrolysis Kinetics of Biomass and Fossil Fuels
,”
Fuel
,
117
, pp.
1204
1214
.
8.
Perez-Jeldres
,
R.
,
Cornejo
,
P.
,
Flores
,
M.
,
Gordon
,
A.
, and
Garcia
,
X.
,
2017
, “
A Modeling Approach to Co-Firing Biomass/Coal Blends in Pulverized Coal Utility Boilers: Synergistic Effects and Emission Profiles
,”
Energy
,
120
, pp.
663
674
.
9.
Jeong
,
H. J.
,
Hwang
,
I. S.
, and
Hwang
,
J.
,
2015
, “
Co-Gasification of Bituminous Coal-Pine Sawdust Blended Char With H2O at Temperatures of 750–850 °C
,”
Fuel
,
156
, pp.
26
29
.
10.
Howaniec
,
N.
, and
Smolinski
,
A.
,
2013
, “
Steam Co-Gasification of Coal and Biomass-Synergy in Reactivity of Fuel Blends Chars
,”
Int. J. Hydrogen Energy
,
38
(
36
), pp.
16152
16160
.
11.
Howaniec
,
N.
, and
Smolinski
,
A.
,
2014
, “
Influence of Fuel Blend Ash Components on Steam Co-Gasification of Coal and Biomass-Chemometric Study
,”
Energy
,
78
, pp.
814
825
.
12.
Howaniec
,
N.
,
Smolinski
,
A.
,
Stanczyk
,
K.
, and
Pichlak
,
M.
,
2011
, “
Steam Co-Gasification of Coal and Biomass Derived Chars With Synergy Effect as an Innovative Way of Hydrogen-Rich Gas Production
,”
Int. J. Hydrogen Energy
,
36
(
22
), pp.
14455
14463
.
13.
Kern
,
S.
,
Pfeifer
,
C.
, and
Hofbauer
,
H.
,
2013
, “
Co-Gasification of Wood and Lignite in a Dual Fluidized Bed Gasifier
,”
Energy Fuel
,
27
(
2
), pp.
919
931
.
14.
Yurdakul
,
S.
,
2016
, “
Determination of Co-Combustion Properties and Thermal Kinetics of Poultry Litter/Coal Blends Using Thermogravimetry
,”
Renewable Energy
,
89
, pp.
215
223
.
15.
Otero
,
M.
,
Sanchez
,
M. E.
, and
Gomez
,
X.
,
2011
, “
Co-Firing of Coal and Manure Biomass: A TG-MS Approach
,”
Bioresour. Technol.
,
102
(
17
), pp.
8304
8309
.
16.
An
,
Y.
,
Tahmasebi
,
A.
, and
Yu
,
J.
,
2017
, “
Mechanism of Synergy Effect During Microwave Co-Pyrolysis of Biomass and Lignite
,”
J. Anal. Appl. Pyrolysis
,
128
, pp.
75
82
.
17.
Bilgic
,
E.
,
Yaman
,
S.
,
Haykiri-Acma
,
H.
, and
Kucukbayrak
,
S.
,
2016
, “
Is Torrefaction of Polysaccharides-Rich Biomass Equivalent to Carbonization of Lignin-Rich Biomass?
,”
Bioresour. Technol.
,
200
, pp.
201
207
.
18.
Bilgic
,
E.
,
Yaman
,
S.
,
Haykiri-Acma
,
H.
, and
Kucukbayrak
,
S.
,
2016
, “
Limits of Variations on the Structure and the Fuel Characteristics of Sunflower Seed Shell Through Torrefaction
,”
Fuel Process Technol.
,
144
, pp.
197
202
.
19.
Wei
,
J.
,
Guo
,
Q.
,
He
,
Q.
,
Ding
,
L.
,
Yoshikawa
,
K.
, and
Yu
,
G.
,
2017
, “
Co-Gasification of Bituminous Coal and Hydrochar Derived From Municipal Solid Waste: Reactivity and Synergy
,”
Bioresour. Technol.
,
239
, pp.
482
489
.
20.
Kajitani
,
S.
,
Zhang
,
Y.
,
Umemoto
,
S.
,
Ashizawa
,
M.
, and
Hara
,
S.
,
2010
, “
Co-Gasification Reactivity of Coal and Woody Biomass in High-Temperature Gasification
,”
Energy Fuels
,
24
(
1
), pp.
145
151
.
21.
Singh
,
K.
, and
Zondlo
,
J.
,
2017
, “
Co-Processing Coal and Torrefied Biomass During Direct Liquefaction
,”
J. Energy Inst.
,
90
(
4
), pp.
497
504
.
22.
Jeong
,
H. J.
,
Park
,
S. S.
, and
Hwang
,
J.
,
2014
, “
Co-Gasification of Coal-Biomass Blended Char With CO2 at Temperatures of 900-1100 °C
,”
Fuel
,
116
, pp.
465
470
.
23.
Naidu
,
V. S.
,
Aghalayam
,
P.
, and
Jayanti
,
S.
,
2016
, “
Synergetic and Inhibition Effects in Carbon Dioxide Gasification of Blends of Coals and Biomass Fuels of Indian Origin
,”
Bioresour. Technol.
,
209
, pp.
157
165
.
24.
Karayigit
,
A. I.
,
Oskay
,
G.
,
Tuncer
,
A.
,
Mastalerz
,
M.
,
Gumus
,
B. A.
,
Senguler
,
I.
,
Yaradılmış
,
H.
, and
Tunoğlu
,
C.
,
2016
, “
A Multi-Disciplinary Study of the Golbasi-Harmanli Coal Seam, SE Turkey
,”
Int. J. Coal Geol.
,
167
, pp.
31
47
.
25.
Haykiri-Acma
,
H.
,
Yaman
,
S.
,
Alkan
,
M.
, and
Kucukbayrak
,
S.
,
2014
, “
Mineralogical Characterization of Chemically Isolated Ingredients From Biomass
,”
Energy Convers. Manage.
,
77
, pp.
221
226
.
26.
Soudek
,
P.
,
Rodriguez Valseca
,
I. M.
,
Petrova
,
S.
,
Song
,
J.
, and
Vanek
,
T.
,
2017
, “
Characteristics of Different Types of Biochar and Effects of the Toxicity of Heavy Metals to Germinating Sorghum Seeds
,”
J. Geochem. Explor.
,
182
, pp.
157
165
.
27.
Liskens
,
H. F.
, and
Jackson
,
J. F.
,
1990
,
Modern Methods of Plant Analysis Vol.11-Physical Methods in Plant Sciences
,
Springer-Verlag
,
Berlin
, p.
78
.
28.
Haykiri-Acma
,
H.
,
Kucukbayrak
,
S.
, and
Yaman
,
S.
,
2017
, “
Effects of Torrefaction on Lignin-Rich Biomass (Hazelnut Shell)—Structural Variations
,”
J. Renewable Sustainable Energy
,
9
(
6
), p.
063102
.
29.
Folgueras
,
M. B.
,
Diaz
,
R. M.
,
Xiberta
,
J.
, and
Prieto
,
I.
,
2003
, “
Thermogravimetric Analysis of the Co-Combustion of Coal and Sewage Sludge
,”
Fuel
,
82
(
15–17
), pp.
2051
2055
.
30.
Zhang
,
Y.
,
Zheng
,
Y.
,
Yang
,
M.
, and
Song
,
Y.
,
2016
, “
Effect of Fuel Origin on Synergy During Co-Gasification of Biomass and Coal in CO2
,”
Bioresour. Technol.
,
200
, pp.
789
794
.
31.
Yuan
,
S.
,
Zhou
,
Z. J.
,
Li
,
J.
,
Chen
,
X.
, and
Wang
,
F.
,
2011
, “
HCN and NH3 (NOx Precursors) Released Under Rapid Pyrolysis of Biomass/Coal Blends
,”
J. Anal. Appl. Pyrolysis
,
92
(
2
), pp.
463
469
.
32.
Junga
,
R.
,
Knauer
,
W.
,
Niemiec
,
P.
, and
Tanczuk
,
M.
,
2017
, “
Experimental Tests of Co-Combustion of Laying Hens Manure With Coal by Using Thermogravimetric Analysis
,”
Renewable Energy
,
111
, pp.
245
255
.
You do not currently have access to this content.