Abstract

The purpose of this study is to examine the instabilities of a two-dimensional mixed convection boundary layer flow induced by an impinging ascending flow on a heated horizontal cylinder. A significant amount of works is done in recent years on this problem because of its wide range of applications. However, they did not check the stability of the flow in the face of small disturbances that occur in reality. For this, we adopt the linear stability theory by first solving the steady basic flow and then solving the linear perturbed problem. Thus, the governing equations of the basic flow are reduced to two coupled partial differential equations and solved numerically with the Keller-Box method. The corresponding steady solution is obtained, by varying the position along the cylinder’s surface, for different values of Richardson number (λ) and Prandtl number (Pr), up to, respectively, 3000 and 20. To examine the onset of thermal instabilities, the linear stability analysis is done using the normal mode decomposition with small harmonic disturbances. The Richardson number λ is chosen as the control parameter of these instabilities. The resulting eigenvalue problem is solved numerically by the use of the pseudospectral method based on the Laguerre polynomials. The computed results for neutral and temporal growth curves are depicted and discussed in detail through graphs for various parametric conditions. The critical conditions are illustrated graphically to show from which thermodynamic state, the flow begins to become unstable. As a main result, from ξ = 0 to ξπ/3, we found that forced and mixed convection flow cases are linearly stable in this region. However, in free convection case (λ > 100), it appears that the stagnation zone is the most unstable one and then the instability decreases along the cylinder’s surface up to the limit of its first third, thus giving the most stable zone of the cylinder. Beyond ξ ≈ 1.2, strong instabilities are noted also for low values of Richardson number, and the flow tends to an unstable state even in the absence of thermal effect, i.e., hydrodynamically unstable Ri = 0, probably due to the occurring of the boundary layer separation.

References

1.
Merkin
,
J.
,
1977
, “
Mixed Convection From a Horizontal Circular Cylinder
,”
Int. J. Heat Mass Transf.
,
20
(
1
), pp.
73
77
.
2.
Hu
,
H.
, and
Koochesfahani
,
M.
,
2011
, “
Thermal Effects on the Wake of a Heated Circular Cylinder Operating in Mixed Convection Regime
,”
J. Fluid Mech.
,
685
, pp.
235
270
.
3.
Zanin
,
B. Y.
, and
Sorokin
,
A.
,
2013
, “
Flow Instability in the Zone of Laminar Axisymmetric Boundary Layer Separation
,”
Fluid Dyn.
,
48
(
6
), pp.
747
753
.
4.
Sparrow
,
E.
, and
Lee
,
L.
,
1976
, “
Analysis of Mixed Convection About a Horizontal Cylinder
,”
Int. J. Heat Mass Transf.
,
19
, pp.
229
232
.
5.
Oosthuizen
,
P.
, and
Madan
,
S.
,
1970
, “
Combined Convective Heat Transfer From Horizontal Cylinders in Air
,”
J. Heat Transf.
,
92
(
1
), pp.
194
196
.
6.
Nazar
,
R.
,
Amin
,
N.
, and
Pop
,
I.
,
2003
, “
Mixed Convection Boundary-Layer Flow From a Horizontal Circular Cylinder in Micropolar Fluids: Case of Constant Wall Temperature
,”
Int. J. Numer. Methods Heat Fluid Flow
,
13
(
1
), pp.
86
109
.
7.
Badr
,
H.
,
1983
, “
A Theoretical Study of Laminar Mixed Convection From a Horizontal Cylinder in a Cross Stream
,”
Int. J. Heat Mass Transf.
,
26
(
5
), pp.
639
653
.
8.
Amaouche
,
M.
, and
Peube
,
J.-L.
,
1986
, “
Convection mixte autour d’un cylindre horizontal. Influence des variations des propriétés physiques avec la température
,”
Int. J. Heat Mass Transf.
,
29
(
9
), pp.
1293
1300
.
9.
Patnaik
,
B. V.
,
Narayana
,
P. A.
, and
Seetharamu
,
K.
,
1999
, “
Numerical Simulation of Vortex Shedding Past a Circular Cylinder Under the Influence of Buoyancy
,”
Int. J. Heat Mass Transf.
,
42
(
18
), pp.
3495
3507
.
10.
Nazar
,
R.
,
Amin
,
N.
, and
Pop
,
I.
,
2004
, “
Mixed Convection Boundary-Layer Flow From a Horizontal Circular Cylinder With a Constant Surface Heat Flux
,”
Heat Mass Transf.
,
40
(
3–4
), pp.
219
227
.
11.
Singh
,
A. K.
, and
Kishore
,
N.
,
2018
, “
Laminar Mixed Convection of Non-Newtonian Nanofluids Flowing Vertically Upward Across a Confined Circular Cylinder
,”
J. Therm. Sci. Eng. Appl.
,
10
(
4
),
041012
.
12.
Subbarao
,
A.
,
Prasad
,
V. R.
,
Bhaskar
,
R. N.
, and
Anwer
,
B. O.
,
2015
, “
Modelling Laminar Transport Phenomena in a Casson Rheological Fluid From an Isothermal Sphere With Partial Slip
,”
Therm. Sci.
,
19
(
5
), pp.
1507
1519
.
13.
Rao
,
A. S.
,
Amanulla
,
C.
,
Nagendra
,
N.
,
Bég
,
O. A.
, and
Kadir
,
A.
,
2017
, “
Hydromagnetic Flow and Heat Transfer in a Williamson Non-Newtonian Fluid From a Horizontal Circular Cylinder With Newtonian Heating
,”
Int. J. Appl. Comput. Math.
,
3
, pp.
3389
3409
.
14.
Rashad
,
A.
,
Chamkha
,
A.
, and
Modather
,
M.
,
2013
, “
Mixed Convection Boundary-Layer Flow Past a Horizontal Circular Cylinder Embedded in a Porous Medium Filled With a Nanofluid Under Convective Boundary Condition
,”
Comput. Fluids
,
86
, pp.
380
388
.
15.
Salleh
,
M.
,
Nazar
,
R.
,
Arifin
,
N.
,
Pop
,
I.
, and
Merkin
,
J.
,
2011
, “
Forced-Convection Heat Transfer Over a Circular Cylinder With Newtonian Heating
,”
J. Eng. Math.
,
69
(
1
), pp.
101
110
.
16.
Hayat
,
T.
,
Hussain
,
Z.
,
Alsaedi
,
A.
, and
Farooq
,
M.
,
2016
, “
Magnetohydrodynamic Flow by a Stretching Cylinder With Newtonian Heating and Homogeneous-Heterogeneous Reactions
,”
PLoS One
,
11
(
6
),
e0156955
.
17.
Grigoriadis
,
D.
,
Sarris
,
I.
, and
Kassinos
,
S.
,
2010
, “
MHD Flow Past a Circular Cylinder Using the Immersed Boundary Method
,”
Comput. Fluids
,
39
(
2
), pp.
345
358
.
18.
Makanda
,
G.
,
Shaw
,
S.
, and
Sibanda
,
P.
,
2015
, “
Effects of Radiation on MHD Free Convection of a Casson Fluid From a Horizontal Circular Cylinder With Partial Slip in Non-Darcy Porous Medium With Viscous Dissipation
,”
Bound. Value Probl.
,
2015
(
1
), pp.
75
.
19.
Chen
,
T.
, and
Mucoglu
,
A.
,
1979
, “
Wave Instability of Mixed Convection Flow Over a Horizontal Flat Plate
,”
Int. J. Heat Mass Transf.
,
22
(
2
), pp.
185
196
.
20.
Criminale
,
W. O.
,
Jackson
,
T. L.
, and
Lasseigne
,
D. G.
,
1994
, “
Evolution of Disturbances in Stagnation-Point Flow
,”
J. Fluid Mech.
,
270
, pp.
331
348
.
21.
Theofilis
,
V.
,
Fedorov
,
A.
,
Obrist
,
D.
, and
Dallmann
,
U. C.
,
2003
, “
The Extended Görtler–Hämmerlin Model for Linear Instability of Three-Dimensional Incompressible Swept Attachment-Line Boundary Layer Flow
,”
J. Fluid Mech.
,
487
, pp.
271
313
.
22.
Amaouche
,
M.
, and
Boukari
,
D.
,
2003
, “
Influence of Thermal Convection on Non-Orthogonal Stagnation Point Flow
,”
Int. J. Therm. Sci.
,
42
(
3
), pp.
303
310
.
23.
Amaouche
,
M.
,
Nait Bouda
,
F.
, and
Sadat
,
H.
,
2005
, “
The Onset of Thermal Instability of a Two-Dimensional Hydromagnetic Stagnation Point Flow
,”
Int. J. Heat Mass Transf.
,
48
(
21
), pp.
4435
4445
.
24.
Nait Bouda
,
F.
,
Mendil
,
F.
,
Sadaoui
,
D.
,
Mansouri
,
K.
, and
Amaouche
,
M.
,
2015
, “
Instability of Opposing Double Diffusive Convection in 2D Boundary Layer Stagnation Point Flow
,”
Int. J. Therm. Sci.
,
98
, pp.
192
201
.
25.
Malik
,
M. R.
,
1990
, “
Numerical Methods for Hypersonic Boundary Layer Stability
,”
J. Comput. Phys.
,
86
(
2
), pp.
376
413
.
26.
Mittal
,
S.
,
2010
, “
Stability of Flow Past a Cylinder: Energy Budget of Eigenmodes
,”
Int. J. Numer. Methods Fluids
,
63
(
5
), pp.
533
547
.
27.
Hall
,
P.
,
1984
, “
On the Stability of the Unsteady Boundary Layer on a Cylinder Oscillating Transversely in a Viscous Fluid
,”
J. Fluid Mech.
,
146
, pp.
347
367
.
28.
Amaouche
,
M.
,
Nait Bouda
,
F.
, and
Sadat
,
H.
,
2006
, “
Linear Stability of a Nonorthogonal Axisymmetric Stagnation Flow on a Rotating Cylinder
,”
Phys. Fluids
,
18
(
12
),
124101
.
29.
Amaouche
,
M.
,
Nait-Bouda
,
F.
, and
Sadat
,
H.
,
2007
, “
Oblique Axisymmetric Stagnation Flows in Magnetohydrodynamics
,”
Phys. Fluids
,
19
(
11
),
114106
.
30.
Ping
,
C.
,
1977
, “
Combined Free and Forced Convection Flow About Inclined Surfaces in Porous Media
,”
Int. J. Heat Mass Transf.
,
20
(
8
), pp.
807
814
.
31.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
2012
,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer Science & Business Media
,
Berlin, Heidelberg
.
32.
Aldoss
,
T.
,
Ali
,
Y.
, and
Al-Nimr
,
M.
,
1996
, “
MHD Mixed Convection From a Horizontal Circular Cylinder
,”
Numer. Heat Transf. Part A Appl.
,
30
(
4
), pp.
379
396
.
33.
Anwar
,
I.
,
Amin
,
N.
, and
Pop
,
I.
,
2008
, “
Mixed Convection Boundary Layer Flow of a Viscoelastic Fluid Over a Horizontal Circular Cylinder
,”
Int. J. Non-Linear Mech.
,
43
(
9
), pp.
814
821
.
34.
Salleh
,
M. Z.
,
Nazar
,
R.
, and
Pop
,
I.
,
2010
, “
Mixed Convection Boundary Layer Flow Over a Horizontal Circular Cylinder With Newtonian Heating
,”
Heat Mass Transf.
,
46
(
11–12
), pp.
1411
1418
.
35.
Mendil
,
F.
,
Nait Bouda
,
F.
, and
Sadaoui
,
D.
,
2015
, “
Effect of Temperature Dependent Viscosity on the Thermal Instability of Two-Dimensional Stagnation Point Flow
,”
Mech. Ind.
,
16
(
5
), pp.
506
.
You do not currently have access to this content.