Lignocellulosic woody biomasses such as rhododendron (RD), ash tree (AT), and hybrid poplar (HP) were heated under N2 at 200 °C and 400 °C, which are regarded as outside the range of efficient torrefaction temperatures. Also, several Turkish brown coals were carbonized at 750 °C for comparison. The obtained biochars/chars were characterized by scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and thermal analysis. Combustion reactivity of the raw samples and the chars was estimated using the burning profiles. Burning kinetics was established by the Borchardt and Daniels (B&D) kinetic analysis method that was based on the evaluation of the differential scanning calorimetry (DSC) data. Ignition index (Ci), burnout index (Cb), comprehensive combustibility index (S), and burning stability index (DW) were considered to evaluate the combustion performance. It was concluded that although treatment at 200 °C did not lead to considerable changes on the biomass structure, the combustion performance of the treated biomass became highly improved in comparison with the raw biomass. However, treatment at 400 °C led to serious variations in the biomass structure mainly due to reduction in O content and volatiles so that the fuel properties and the burning characteristics were affected, and the combustion performance was negatively influenced.

References

1.
Klass
,
D. L.
,
1998
,
Biomass for Renewable Energy, Fuels, and Chemicals
,
Academic Press
,
San Diego
.
2.
Arias
,
B.
,
Pevida
,
C.
,
Fermoso
,
J.
,
Plaza
,
M. G.
,
Rubiera
,
F.
, and
Pis
,
J. J.
,
2008
, “
Influence of Torrefaction on the Grindability and Reactivity of Woody Biomass
,”
Fuel Process. Technol.
,
89
, pp.
169
175
.
3.
Chen
,
Y.
,
Yang
,
H.
,
Yang
,
Q.
,
Hao
,
H.
,
Zhu
,
B.
, and
Chen
,
H.
,
2014
, “
Torrefaction of Agriculture Straws and Its Application on Biomass Pyrolysis Poly-generation
,”
Bioresour. Technol.
,
156
, pp.
70
77
.
4.
Arnsfeld
,
S.
,
Senk
,
D.
, and
Gudenau
,
H. W.
,
2014
, “
The Qualification of Torrefied Wooden Biomass and Agricultural Wastes Products for Gasification Processes
,”
J. Anal. Appl. Pyrolysis
,
107
, pp.
133
141
.
5.
Chen
,
W. H.
,
Cheng
,
W. Y.
,
Lu
,
K. M.
, and
Huang
,
Y. P.
,
2011
, “
An Evaluation on Improvement of Pulverized Biomass Property for Solid Fuel Through Torrefaction
,”
Appl. Energy
,
88
, pp.
3636
3644
.
6.
Kambo
,
H. S.
, and
Dutta
,
A.
,
2015
, “
Comparative Evaluation of Torrefaction and Hydrothermal Carbonization of Lignocellulosic Biomass for the Production of Solid Biofuel
,”
Energy Convers. Manag.
,
105
, pp.
746
755
.
7.
Kuo
,
P. C.
, and
Wu
,
W.
,
2016
, “
Design and Thermodynamic Analysis of a Hybrid Power Plant Using Torrefied Biomass and Coal Blends
,”
Energy Convers. Manag.
,
111
, pp.
15
26
.
8.
Gil
,
M. V.
,
García
,
R.
,
Pevida
,
C.
, and
Rubiera
,
F.
,
2015
, “
Grindability and Combustion Behavior of Coal and Torrefied Biomass Blends
,”
Bioresour. Technol.
,
191
, pp.
205
212
.
9.
Sarvaramini
,
A.
, and
Larachi
,
F.
,
2014
, “
Integrated Biomass Torrefaction—Chemical Looping Combustion as a Method to Recover Torrefaction Volatiles Energy
,”
Fuel
,
116
, pp.
158
167
.
10.
Starfelt
,
F.
,
Aparicio
,
E. T.
,
Li
,
H.
, and
Dotzauer
,
E.
,
2015
, “
Integration of Torrefaction in CHP Plants— A Case Study
,”
Energy Convers. Manag.
,
90
, pp.
427
435
.
11.
Park
,
S. W.
,
Jang
,
C. H.
,
Baek
,
K. R.
, and
Yang
,
J. K.
,
2012
, “
Torrefaction and Low-Temperature Carbonization of Woody Biomass: Evaluation of Fuel Characteristics of the Products
,”
Energy
,
45
, pp.
676
685
.
12.
Chew
,
J. J.
, and
Doshi
,
V.
,
2011
, “
Recent Advances in Biomass Pretreatment—Torrefaction Fundamentals and Technology
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
4212
4222
.
13.
Haykiri-Acma
,
H.
,
Yaman
,
S.
, and
Kucukbayrak
,
S.
,
2015
, “
Does Carbonization Avoid Segregation of Biomass and Lignite during Co-firing? Thermal Analysis Study
,”
Fuel Process. Technol.
,
137
, pp.
312
319
.
14.
Liu
,
Z.
,
Jiang
,
Z.
,
Cai
,
Z.
,
Fei
,
B.
,
Yu
,
Y.
, and
Liu
,
X.
,
2013
, “
Effects of Carbonization Conditions on Properties of Bamboo Pellets
,”
Renewable Energy
,
51
, pp.
1
6
.
15.
Mori
,
A.
,
Kubo
,
S.
,
Kudo
,
S.
,
Norinaga
,
K.
,
Kanai
,
T.
,
Aoki
,
H.
, and
Hayashi
,
J. I.
,
2012
, “
Preparation of High-Strength Coke by Carbonization of Hot-Briquetted Victorian Brown Coal
,”
Energy Fuels
,
26
, pp.
296
301
.
16.
Kalyania
,
P.
, and
Anitha
,
A.
,
2013
, “
Biomass Carbon & Its Prospects in Electrochemical Energy Systems
,”
Int. J. Hydrogen Energy
,
38
, pp.
4034
4045
.
17.
Doumer
,
M. E.
,
Arizaga
,
G. G. C.
,
da Silva
,
D. A.
,
Yamamoto
,
C. I.
,
Novotny
,
E. H.
,
Santos
,
J. M.
,
dos Santos
,
L. O.
,
Wisniewski,
A.
, Jr.
,
de Andrade
,
J. B.
, and
Mangrich
,
A. S.
,
2015
, “
Slow Pyrolysis of Different Brazilian Waste Biomasses as Sources of Soil Conditioners and Energy, and for Environmental Protection
,”
J. Anal. Appl. Pyrolysis
,
113
, pp.
434
443
.
18.
Du
,
S. W.
,
Chen
,
W. H.
, and
Lucas
,
J. A.
,
2014
, “
Pretreatment of Biomass by Torrefaction and Carbonization for Coal Blend, Used in Pulverized Coal Injection
,”
Bioresour. Technol.
,
161
, pp.
333
339
.
19.
Xiong
,
S.
,
Zhang
,
S.
,
Wu
,
Q.
,
Guo
,
X.
,
Dong
,
A.
, and
Chen
,
C.
,
2014
, “
Investigation on Cotton Stalk and Bamboo Sawdust Carbonization for Barbecue Charcoal Preparation
,”
Bioresour. Technol.
,
152
, pp.
86
92
.
20.
Trevino-Cordero
,
H.
,
Juárez-Aguilar
,
L. G.
,
Mendoza-Castillo
,
D. I.
,
Hernández-Montoya
,
V.
,
Bonilla-Petriciolet
,
A.
, and
Montes-Morán
,
M. A.
,
2013
, “
Synthesis and Adsorption Properties of Activated Carbons From Biomass of Prunus Domestica and Jacaranda Mimosifolia for the Removal of Heavy Metals and Dyes From Water
,”
Ind. Crops Prod.
,
42
, pp.
315
323
.
21.
Kadirvelu
,
K.
,
Senthilkumar
,
P.
,
Thamaraiselvi
,
K.
, and
Subburam
,
V.
,
2002
, “
Activated Carbon Prepared From Biomass as Adsorbent: Elimination of Ni(II) From Aqueous Solution
,”
Bioresour. Technol.
,
81
, pp.
87
90
.
22.
Budinova
,
T.
,
Savova
,
D.
,
Tsyntsarski
,
B.
,
Ania
,
C. O.
,
Cabal
,
B.
,
Parra
,
J. B.
, and
Petrov
,
N.
,
2009
, “
Biomass Waste-Derived Activated Carbon for the Removal of Arsenic and Manganese Ions From Aqueous Solutions
,”
Appl. Surf. Sci.
,
255
, pp.
4650
4657
.
23.
Nunell
,
G. V.
,
Fernandez
,
M. E.
,
Bonelli
,
P. R.
, and
Cukierman
,
A. L.
,
2012
, “
Conversion of Biomass From an Invasive Species Into Activated Carbons for Removal of Nitrate From Wastewater
,”
Biomass Bioenergy
,
44
, pp.
87
95
.
24.
Karagoz
,
S.
,
Tay
,
T.
,
Ucar
,
S.
, and
Erdem
,
M.
,
2008
, “
Activated Carbons From Waste Biomass by Sulfuric Acid Activation and Their Use on Methylene Blue Adsorption
,”
Bioresour. Technol.
,
99
, pp.
6214
6222
.
25.
Ma
,
X.
, and
Ouyang
,
F.
,
2013
, “
Adsorption Properties of Biomass-Based Activated Carbon Prepared With Spent Coffee Grounds and Pomelo Skin by Phosphoric Acid Activation
,”
Appl. Surf. Sci.
,
268
, pp.
566
570
.
26.
Satonaka
,
S.
,
1982
,
Carbonization and Gasification of Wood, in Energy From Forest Biomass
,
Academic Press, Inc.
,
New York
.
27.
Tumuluru
,
J. S.
,
Sokhansanj
,
S.
,
Hess
,
J. R.
,
Wright
,
C. T.
, and
Boardman
,
R. D.
,
2011
, “
A Review on Biomass Torrefaction Process and Product Properties for Energy Applications
,”
Ind. Biotechnol.
,
7
, pp.
384
401
.
28.
Shoulaifar
,
T. K.
,
DeMartini
,
N.
,
Ivaska
,
A.
,
Fardim
,
P.
, and
Hupa
,
M.
,
2012
, “
Measuring the Concentration of Carboxylic Acid Groups in Torrefied Spruce Wood
,”
Bioresour. Technol.
,
123
, pp.
338
343
.
29.
Dai
,
G. X.
,
Zou
,
Q.
,
Wang
,
S. R.
,
Zhao
,
Y.
,
Zhu
,
L. J.
, and
Huang
,
Q. X.
,
2018
, “
Effect of Torrefaction on the Structure and Pyrolysis Behavior of Lignin
,”
Energy Fuels
,
32
, pp.
4160
4166
.
30.
Kumar
,
R.
, and
Singh
,
R. Y.
,
2017
, “
An Investigation of Co-combustion Municipal Sewage Sludge With Biomass in a 20 kW BFB Combustor Under Air-fired and Oxygen-Enriched Condition
,”
Waste Manage.
,
70
, pp.
114
126
.
31.
Niu
,
S.
,
Chen
,
M.
,
Li
,
Y.
, and
Xue
,
F.
,
2016
, “
Evaluation on the Oxy-Fuel Combustion Behavior of Dried Sewage Sludge
,”
Fuel
,
178
, pp.
129
138
.
32.
Wang
,
Z.
,
Hong
,
C.
,
Xing
,
Y.
,
Li
,
Y.
,
Feng
,
L.
, and
Jia
,
M.
,
2018
, “
Combustion Behaviors and Kinetics of Sewage Sludge Blended With Pulverized Coal: With and Without Catalysts
,”
Waste Manage.
,
74
, pp.
288
296
.
33.
He
,
C.
,
Giannis
,
A.
, and
Wang
,
J. Y.
,
2013
, “
Conversion of Sewage Sludge to Clean Solid Fuel Using Hydrothermal Carbonization: Hydrochar Fuel Characteristics and Combustion Behavior
,”
Appl. Energy
,
111
, pp.
257
266
.
34.
Liu
,
Y.
,
Cao
,
X.
,
Duan
,
X.
,
Wang
,
Y.
, and
Che
,
D.
,
2018
, “
Thermal Analysis on Combustion Characteristics of Predried Dyeing Sludge
,”
Appl. Therm. Eng.
,
140
, pp.
158
165
.
35.
Tran
,
K. Q.
,
Luo
,
X.
,
Seisenbaeva
,
G.
, and
Jirjis
,
R.
,
2013
, “
Stump Torrefaction for Bioenergy Application
,”
Appl. Energy
,
112
, pp.
539
546
.
36.
Wilk
,
M.
,
Magdziarz
,
A.
,
Kalemba
,
I.
, and
Gara
,
P.
,
2016
, “
Carbonisation of Wood Residue into Charcoal During Low Temperature Process
,”
Renewable Energy
,
85
, pp.
507
513
.
37.
Xu
,
M.
, and
Sheng
,
C.
,
2012
, “
Influences of the Heat-Treatment Temperature and Inorganic Matter on Combustion Characteristics of Cornstalk Biochars
,”
Energy Fuels
,
26
, pp.
209
218
.
You do not currently have access to this content.