Phase-change materials (PCMs) are a useful alternative to more traditional methods of thermal management of various applications. PCMs are materials that absorb large amounts of latent heat and undergo solid-to-liquid phase change at near-constant temperature. The goal of the research is to experimentally investigate the thermal properties of a novel shape-stabilized PCM/HDPE composite extruded filament. The extruded filament can then be used in a 3D printer for custom PCM/HDPE shapes. The PCM used in the study is PureTemp PCM 42, which is an organic-based material that melts around 42 °C. Four PCM/HDPE mixtures were investigated (all percentages by mass): 20/80, 30/70, 40/60, and 50/50. Preliminary findings include differential scanning calorimeter (DSC) measurements of melting temperature and latent heat as well as scanning electron microscope (SEM) pictures of filament composition.

References

1.
Wang
,
J.
,
Wang
,
Y.
, and
Yang
,
R.
,
2015
, “
Flame Retardance Property of Shape-Stabilized Phase Change Materials
,”
Sol. Energy Mater. Sol. Cells
,
140
, pp.
439
445
.
2.
Navarro
,
L.
,
de Gracia
,
A.
,
Colclough
,
S.
,
Browne
,
M.
,
McCormack
,
S. J.
,
Griffiths
,
P.
, and
Cabeza
,
L. F.
,
2016
, “
Thermal Energy Storage in Building Integrated Thermal Systems: A Review. Part 1. Active Storage Systems
,”
Renew. Energ.
,
88
, pp.
526
547
.
3.
Navarro
,
L.
,
de Gracia
,
A.
,
Niall
,
D.
,
Castell
,
A.
,
Browne
,
M.
,
McCormack
,
S. J.
,
Griffiths
,
P.
, and
Cabeza
,
L. F.
,
2016
, “
Thermal Energy Storage in Building Integrated Thermal Systems: A Review. Part 2. Integration as Passive System
,”
Renew. Energ.
,
85
, pp.
1334
1356
.
4.
Kong
,
X.
,
Jie
,
P.
,
Yao
,
C.
, and
Liu
,
Y.
,
2017
, “
Experimental Study on Thermal Performance of Phase Change Material Passive and Active Combined using for Building Application in Winter
,”
Appl. Energ.
,
206
, pp.
293
302
.
5.
Kong
,
X.
,
Yao
,
C.
,
Jie
,
P.
,
Liu
,
Y.
,
Qi
,
C.
, and
Rong
,
X.
,
2017
, “
Development and Thermal Performance of an Expanded Perlite-Based Phase Change Material Wallboard for Passive Cooling in Building
,”
Energ. Build.
,
152
, pp.
547
557
.
6.
Huang
,
M.
,
Eames
,
P.
, and
Norton
,
B.
,
2006
, “
Phase Change Materials for Limiting Temperature Rise in Building Integrated Photovoltaics
,”
Sol. Energ.
,
80
(
9
), pp.
1121
1130
.
7.
Huang
,
M.
,
Eames
,
P.
, and
Norton
,
B.
,
2006
, “
Comparison of a Small-Scale 3D PCM Thermal Control Model with a Validated 2D PCM Thermal Control Model
,”
Sol. Energ. Mater. Sol. Cells
,
90
(
13
), pp.
1961
1972
.
8.
Park
,
J.
,
Kim
,
T.
, and
Leigh
,
S.-B.
,
2014
, “
Application of a Phase-Change Material to Improve the Electrical Performance of Vertical-Building-Added Photovoltaics Considering the Annual Weather Conditions
,”
Sol. Energ.
,
105
, pp.
561
574
.
9.
Aelenei
,
L.
,
Pereira
,
R.
,
Gonçalves
,
H.
, and
Athienitis
,
A.
,
2014
, “
Thermal Performance of a Hybrid BIPV-PCM: Modeling, Design and Experimental Investigation
,”
Energ. Procedia
,
48
, pp.
474
483
. Proceedings of the 2nd International Conference on Solar Heating and Cooling for Buildings and Industry (SHC 2013).
10.
Al Hallaj
,
S.
, and
Selman
,
J.
,
2000
, “
Novel Thermal Management System for Electric Vehicle Batteries using Phase-Change Material
,”
J. Electrochem. Soc.
,
147
, pp.
3231
3236
.
11.
Kizilel
,
R.
,
Sabbah
,
R.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2009
, “
An Alternative Cooling System to Enhance the Safety of Li-Ion Battery Packs
,”
J. Power. Sources.
,
194
, pp.
1105
1112
.
12.
Pan
,
D.
,
Xu
,
S.
,
Lin
,
C.
, and
Chang
,
G.
,
2016
, “
Thermal Management of Power Batteries for Electric Vehicles using Phase Change Materials: A Review
,” SAE Technical Paper No. 2016-01-1204.
13.
Inaba
,
H.
, and
Tu
,
P.
,
1997
, “
Evaluation of Thermophysical Characteristics on Shape-Stabilized Paraffin as a Solid-Liquid Phase Change Material
,”
Heat Mass Trans./Waerme- und Stoffuebertragung
,
32
(
4
), pp.
307
312
.
14.
Hong
,
Y.
, and
Xin-shi
,
G.
,
2000
, “
Preparation of Polyethylene-Paraffin Compound as a Form-Stable Solid-Liquid Phase Change Material
,”
Sol. Energ. Mater. Sol. Cells
,
64
(
1
), pp.
37
44
.
15.
Cheng
,
W.
,
Zhang
,
R.
,
Xie
,
K.
,
Liu
,
N.
, and
Wang
,
J.
,
2010
, “
Heat Conduction Enhanced Shape-Stabilized Paraffin/HDPE Composite PCMS by Graphite Addition: Preparation and Thermal Properties
,”
Sol. Energ. Mater. Sol. Cells
,
94
(
10
), pp.
1636
1642
.
16.
Cheng
,
W.
,
Liu
,
N.
, and
Wu
,
W.
,
2012
, “
Studies on Thermal Properties and Thermal Control Effectiveness of a New Shape-Stabilized Phase Change Material with High Thermal Conductivity
,”
Appl. Therm. Eng.
,
36
, pp.
345
352
.
17.
Cheng
,
W.
,
Xie
,
B.
,
Zhang
,
R.
,
Xu
,
Z.
, and
Xia
,
Y.
,
2015
, “
Effect of Thermal Conductivities of Shape Stabilized PCM on Under-Floor Heating System
,”
Appl. Energ.
,
144
, pp.
10
18
.
18.
Sari
,
A.
,
2004
, “
Form-Stable Paraffin/High Density Polyethylene Composites as Solid-Liquid Phase Change Material for Thermal Energy Storage: Preparation and Thermal Properties
,”
Energ. Convers. Manag.
,
45
(
13–14
), pp.
2033
2042
.
19.
Yan
,
Q.
,
Li
,
L.
, and
Shen
,
D.
,
2010
, “
Thermal Properties of Shape-Stabilized Paraffin Used for Wallboard
,”
Int. J. Sustain. Energ.
,
29
(
2
), pp.
87
95
.
20.
Tan
,
S.
,
Yu
,
S.
,
Xu
,
G.
, and
Zhang
,
Y.
,
2013
, “
Preparation and Properties Studies of Paraffin/High Density Polyethylene Composites and Phase-Change Coatings
,”
Prog. Org. Coat.
,
76
(
12
), pp.
1761
1764
.
21.
Sobolčiak
,
P.
, and
Abdelrazeq
,
H.
,
2016
, “
Heat Transfer Performance of Paraffin Wax Based Phase Change Materials Applicable in Building Industry
,”
Appl. Therm. Eng.
,
107
, pp.
1313
1323
.
22.
Lee
,
C.
, and
Choi
,
H.
,
1998
, “
Crystalline Morphology in High-Density Polyethylene/Paraffin Blend for Thermal Energy Storage
,”
Polym. Compos.
,
19
(
6
), pp.
704
708
.
23.
Hlangothi
,
S.
,
Krupa
,
I.
,
Djoković
,
V.
, and
Luyt
,
A.
,
2003
, “
Thermal and Mechanical Properties of Cross-Linked And Uncross-Linked Linear Low-Density Polyethylene-Wax Blends
,”
Polym. Degrad. Stab.
,
79
(
1
), pp.
53
59
.
24.
Krupa
,
I.
,
Miková
,
G.
, and
Luyt
,
A.
,
2007
, “
Phase Change Materials Based on Low-Density Polyethylene/Paraffin Wax Blends
,”
Eur. Polym. J.
,
43
(
11
), pp.
4695
4705
.
25.
Hato
,
M.
, and
Luyt
,
A.
,
2007
, “
Thermal Fractionation and Properties of Different Polyethylene/Wax Blends
,”
J. Appl. Polym. Sci.
,
104
(
4
), pp.
2225
2236
.
26.
Molefi
,
J.
,
Luyt
,
A.
, and
Krupa
,
I.
,
2010
, “
Comparison of LDPE, LLDPE and HDPE as Matrices for Phase Change Materials Based on a Soft Fischer-Tropsch Paraffin Wax
,”
Thermochim. Acta.
,
500
(
1–2
), pp.
88
92
.
27.
Mngomezulu
,
M.
,
Luyt
,
A.
, and
Krupa
,
I.
,
2010
, “
Structure and Properties of Phase Change Materials Based on HDPE, Soft Fischer-Tropsch Paraffin Wax, and Wood Flour
,”
J. Appl. Polym. Sci.
,
118
(
3
), pp.
1541
1551
.
28.
Zhang
,
Y.
,
Lin
,
K.
,
Yang
,
R.
,
Di
,
H.
, and
Jiang
,
Y.
,
2006
, “
Preparation, Thermal Performance and Application of Shape-Stabilized PCM in Energy Efficient Buildings
,”
Energy. Build.
,
38
, pp.
1262
1269
.
29.
Zhou
,
G.
,
Zhang
,
Y.
,
Lin
,
K.
, and
Xiao
,
W.
,
2008
, “
Thermal Analysis of a Direct-Gain Room with Shape-Stabilized PCM Plates
,”
Renew. Energ.
,
33
(
6
), pp.
1228
1236
.
30.
Cai
,
Y.
,
Hu
,
Y.
,
Song
,
L.
,
Lu
,
H.
,
Chen
,
Z.
, and
Fan
,
W.
,
2006
, “
Preparation and Characterizations of HDPE-EVA Alloy/OMT Nanocomposites/Paraffin Compounds as a Shape Stabilized Phase Change Thermal Energy Storage Material
,”
Thermochim. Acta.
,
451
(
1–2
), pp.
44
51
.
31.
Chen
,
F.
, and
Wolcott
,
M.
,
2014
, “
Miscibility Studies of Paraffin/Polyethylene Blends as Form-Stable Phase Change Materials
,”
Eur. Polym. J.
,
52
(
1
), pp.
44
52
.
32.
Chen
,
F.
, and
Wolcott
,
M.
,
2015
, “
Polyethylene/Paraffin Binary Composites for Phase Change Material Energy Storage in Building: A Morphology, Thermal Properties, and Paraffin Leakage Study
,”
Sol. Energ. Mater. Sol. Cells
,
137
, pp.
79
85
.
33.
Mu
,
M.
,
Basheer
,
P.
,
Sha
,
W.
,
Bai
,
Y.
, and
McNally
,
T.
,
2016
, “
Shape Stabilised Phase Change Materials Based on a High Melt Viscosity HDPE and Paraffin Waxes
,”
Appl. Energ.
,
162
, pp.
68
82
.
34.
Tang
,
Y.
,
Jia
,
Y.
,
Alva
,
G.
,
Huang
,
X.
, and
Fang
,
G.
,
2016
, “
Synthesis, Characterization and Properties of Palmitic Acid/High Density Polyethylene/Graphene Nanoplatelets Composites as Form-Stable Phase Change Materials
,”
Sol. Energ. Mater. Sol. Cells
,
155
, pp.
421
429
.
35.
Tang
,
Y.
,
Su
,
D.
,
Huang
,
X.
,
Alva
,
G.
,
Liu
,
L.
, and
Fang
,
G.
,
2016
, “
Synthesis and Thermal Properties of the MA/HDPE Composites with Nano-Additives as Form-Stable PCM with Improved Thermal Conductivity
,”
Appl. Energ.
,
180
, pp.
116
129
.
36.
Tang
,
Y.
,
Lin
,
Y.
,
Jia
,
Y.
, and
Fang
,
G.
,
2017
, “
Improved Thermal Properties of Stearyl Alcohol/High Density Polyethylene/Expanded Graphite Composite Phase Change Materials for Building Thermal Energy Storage
,”
Energ. Build.
,
153
, pp.
41
49
.
37.
Huang
,
X.
,
Alva
,
G.
,
Liu
,
L.
, and
Fang
,
G.
,
2017
, “
Microstructure and Thermal Properties of Cetyl Alcohol/High Density Polyethylene Composite Phase Change Materials with Carbon Fiber as Shape-Stabilized Thermal Storage Materials
,”
Appl. Energ.
,
200
, pp.
19
27
.
38.
AlMaadeed
,
M.
,
Labidi
,
S.
,
Krupa
,
I.
, and
Karkri
,
M.
,
2015
, “
Effect of Expanded Graphite on the Phase Change Materials of High Density Polyethylene/Wax Blends
,”
Thermochim. Acta
,
600
, pp.
35
44
.
39.
Guo
,
X.
,
Zhang
,
S.
, and
Cao
,
J.
,
2018
, “
An Energy-Efficient Composite by using Expanded Graphite Stabilized Paraffin as Phase Change Material
,”
Compos. Pt. A Appl. Sci. Manuf.
,
107
, pp.
83
93
.
You do not currently have access to this content.