In this paper, fluid flow pattern and heat transfer behavior are numerically studied in a trapezoidal enclosure inclined at different tilt angles. The enclosure has isothermally heated cylindrical inner wall and cooled cylindrical outer wall, whereas sidewalls have linearly varying temperature profile. The numerical analysis is performed at different Rayleigh numbers (103 ≤ Ra ≤106) and Prandtl numbers (0.71 ≤ Pr ≤ 40) assuming steady, incompressible, laminar, Newtonian, and two-dimensional flow. The angle between two nonparallel sidewalls is varied from 10 deg to 90 deg, while the tilt angle is varied from 5 deg to 175 deg. Governing equations along with the Poisson type equation for heatfunctions are solved to obtain fluid flow and direction of heat flow in the trapezoidal enclosure. At low Raleigh number, the isotherms are smooth, indicating the dominance of conduction heat transfer dominates. The streamlines, isotherms, and heatlines in high Prandtl number (Pr = 6.99 ad 40) fluids show a similar pattern as that in the air (Pr = 0.71) at Ra = 106; however, the strength of heatfunctions increases. With the increase in the aspect ratio of the enclosure, thermally stratified region is found to increase in size. Stronger convection is present in the enclosure with a higher angle between two nonparallel sidewalls.

References

1.
Das
,
D.
,
Roy
,
M.
, and
Basak
,
T.
,
2017
, “
Studies on Natural Convection Within Enclosures of Various (Non-Square) Shapes: A Review
,”
Int. J. Heat Mass Transf.
,
106
, pp.
356
406
.
2.
Lee
,
T. S.
,
1991
, “
Numerical Experiments With Fluid Convection in Tilted Nonrectangular Enclosures
,”
Numer. Heat Transfer A
,
19
(
4
), pp.
487
499
.
3.
Lam,
,
S. W.
,
Gani
,
R.
, and
and Symons
,
J. G.
,
1989
, “
Experimental and Numerical Studies of Natural Convection in Trapezoidal Cavities
,”
ASME J. Heat Transfer
,
111
(
2
), pp.
372
377
.
4.
Peric
,
M.
,
1993
, “
Natural Convection in Trapezoidal Cavities
,”
Num. Heat Transfer A
,
24
(
2
), pp.
213
219
.
5.
Kuyper
,
R. A.
, and
Hoogendoorn
,
C. J.
,
1995
, “
Laminar Natural Convection Flow in Trapezoidal Enclosures
,”
Num. Heat Transfer A
,
28
(
1
), pp.
55
67
.
6.
Basak
,
T.
,
Roy
,
S.
, and
Pop
,
I.
,
2009
, “
Heat Flow Analysis for Natural Convection Within Trapezoidal Enclosures Based on Heatline Concept
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2471
2483
.
7.
Basak
,
T.
,
Singh
,
A.
, and
Pandey
,
B. D.
,
2009
, “
Natural Convection Flow Simulation for Various Angles in a Trapezoidal Enclosure With Linearly Heated Sidewall(s)
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4413
4425
.
8.
Basak
,
T.
,
Ramakrishna
,
D.
,
Roy
,
S.
,
Matta
,
A.
, and
Pop
,
I.
,
2011
, “
A Comprehensive Heatline Based Approach for Natural Convection Flows in Trapezoidal Enclosures: Effect of Various Walls Heating
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1385
1404
.
9.
Ramakrishna
,
D.
,
Basak
,
T.
, and
Roy
,
S.
,
2013
, “
Analysis of Heatlines and Entropy Generation During Free Convection Within Trapezoidal Cavities
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
32
40
.
10.
Kumar
,
B. V. R.
, and
Kumar
,
B.
,
2004
, “
Parallel Computation of Natural Convection in Trapezoidal Porous Enclosures
,”
Math. Comput. Simul.
,
65
(
3
), pp.
221
229
.
11.
Basak
,
T.
,
Roy
,
S.
,
Matta
,
A.
, and
Pop
,
I.
,
2010
, “
Analysis of Heatlines for Natural Convection Within Porous Trapezoidal Enclosures: Effect of Uniform and Non-Uniform Heating of Bottom Wall
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5947
5961
.
12.
Ramakrishna
,
D.
,
Basak
,
T.
, and
Roy
,
S.
,
2012
, “
Heatlines for Visualization of Heat Transport for Natural Convection Within Porous Trapezoidal Enclosures With Various Wall Heating
,”
Numer. Heat Transfer A
,
63
(
5
), pp.
347
372
.
13.
Basak
,
T.
,
Anandalakshmi
,
R.
,
Roy
,
S.
, and
Pop
,
I.
,
2013
, “
Role of Entropy Generation on Thermal Management Due to Thermal Convection in Porous Trapezoidal Enclosures With Isothermal and Non-Isothermal Heating of Wall
,”
Int. J. Heat Mass Transfer
,
67
, pp.
810
828
.
14.
Ramakrishna
,
D.
,
Basak
,
T.
,
Roy
,
S.
, and
Mamoniat
,
E.
,
2014
, “
Analysis of Thermal Efficiency via Analysis of Heat Flow and Entropy Generation During Natural Convection Within Porous Trapezoidal Cavities
,”
Int. J. Heat Mass Transfer
,
77
, pp.
98
113
.
15.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Pop
,
I.
,
2009
, “
Natural Convection in Right-Angle Porous Trapezoidal Enclosure Partially Cooled From Inclined Wall
,”
Int. Commun. Heat Mass Transfer
,
36
(
1
), pp.
6
15
.
16.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Pop
,
I.
,
2009
, “
Entropy Analysis Due to Conjugate-Buoyant Flow in a Right-Angle Trapezoidal Enclosure Filled With a Porous Medium Bounded by a Solid Vertical Wall
,”
Int. J. Therm. Sci.
,
48
(
6
), pp.
1161
1175
.
17.
Varol
,
Y.
,
2012
, “
Natural Convection for Hot Materials Confined Within Two Entrapped Porous Trapezoidal Cavities
,”
Int. Commun. Heat Mass Transfer
,
39
(
2
), pp.
282
290
.
18.
Iyican
,
L.
,
Bayazitoglu
,
Y.
, and
Witte
,
L. C.
,
1980
, “
An Analytical Study of Natural Convective Heat Transfer Within a Trapezoidal Enclosure
,”
ASME J. Heat Transfer
,
102
(
4
), pp.
640
647
.
19.
Iyican
,
L.
,
Witte
,
L. C.
, and
Bayazitoglu
,
Y.
,
1980
, “
An Experimental Study of Natural Convection in Trapezoidal Enclosures
,”
ASME J. Heat Transfer
,
102
(
4
), pp.
648
653
.
20.
Baytas
,
A. C.
, and
Pop
,
I.
,
2001
, “
Natural Convection in a Trapezoidal Enclosure Filled With a Porous Medium
,”
Int. J. Eng. Sci.
,
39
, pp.
125
134
.
21.
Berkovsky
,
B. M.
, and
Polevikov
,
V. K.
,
1977
, “Numerical Study of Problems on High-Intensive Free Convection,”
D. B.
Spalding
, and
N.
Afghan
, eds.,
Heat Transfer and Turbulent Buoyant Convection
, Vol. II, Hemisphere,
Washington, DC
, pp.
443
455
.
22.
Qin
,
Z.
,
Ji
,
C.
,
Low
,
Z.
,
Dubey
,
S.
,
Choo
,
F. K.
, and
Duan
,
F.
,
2017
, “
Effect of Fin Location on the Latent Heat Storage: A Numerical Study
,”
Energy Proc.
,
143
, pp.
320
326
.
23.
Deng
,
Q. H.
, and
Tang
,
G. F.
,
2002
, “
Numerical visualization of mass and heat transport for conjugate natural convection/heat conduction by streamline and heatline
,”
Int. J. Heat Mass Transf.
45
(
11
), pp.
2373
2385
.
24.
Kimura
,
S.
, and
Bejan
,
A.
,
1983
, “
The “Heatline” Visualization of Convective Heat Transfer
,”
Trans. ASME
,
105
(
4
), pp.
916
919
.
You do not currently have access to this content.