Abstract

The film cooling characteristics of the transverse trench (TT) and the double-wave trench (DWT) were numerically studied by using Reynolds-averaged Navier–Stokes simulations with realizable k–ɛ turbulence model and enhanced wall treatment. The experiment was used to validate the accuracy of numerical simulation. The film cooling effectiveness and the heat transfer coefficient and the heat flux ratio of the double-wave trench are investigated, and the distribution of temperature field and flow field were analyzed. The results show that the double-wave trench can effectively improve the uniformity of jet compared with the transverse trench. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient of the double-wave trench increases. The span-wise average heat flux ratio of the trench width W = 1.4D condition is lower than that of the other two trenches, so it has the best thermal protection effect of film cooling on the wall.

References

1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
(
1
), pp.
321
379
. 10.1016/S0065-2717(08)70020-0
2.
Ekked
,
S.
, and
Han
,
J. C.
,
2015
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
Front. Heat Mass Transfer
,
6
(
1
), pp.
1
14
.
3.
Eckert
,
E. R. G.
,
Eriksen
,
V. L.
,
Goldstein
,
R. J.
, and
Ramsey
,
J. W.
,
1970
, “
Film Cooling Following Injection Through Inclined Circular Tubes
,”
Israel J. Technol.
,
8
(
1–2
), pp.
145
154
.
4.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
. 10.1115/1.2929422
5.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
. 10.1016/0017-9310(74)90007-6
6.
Bunker
,
R. S.
,
2002
, “
Film Cooling Effectiveness due to Discrete Holes Within a Transverse Surface Slot
,”
ASME
Paper No. GT2002-30178. 10.1115/gt2002-30178
7.
Wang
,
T.
,
Chintalapati
,
S.
,
Bunker
,
R. S.
, and
Ching
,
P.
,
2000
, “
Jet Mixing in a Slot
,”
Exp. Therm. Fluid. Sci.
,
22
(
1
), pp.
1
17
. 10.1016/S0894-1777(00)00010-8
8.
Chen
,
X.
,
He
,
L. M.
, and
Yu
,
J. L.
,
2010
, “
Experiments on Improving Film Cooling Effectiveness With Transverse Slots
,”
J. Aerosp. Power
,
25
(
2
), pp.
291
294
.
9.
Lu
,
Y. P.
,
Dhungel
,
A.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2009
, “
Film Cooling Measurements for Cratered Cylindrical Inclined Holes
,”
ASME J. Turbomach.
,
131
(
1
), p.
011005
. 10.1115/1.2950055
10.
Davidson
,
F. T.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2012
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters and Trenches
,”
ASME J. Turbomach.
,
136
(
4
), p.
041007
. 10.1115/1.4024883
11.
Waye
,
S. K.
, and
Bogard
,
D. G.
,
2007
, “
High-Resolution Film Cooling Effectiveness Measurements of Axial Holes Embedded in a Transverse Trench With Various Trench Configurations
,”
ASME J. Turbomach.
,
129
(
2
), pp.
294
302
. 10.1115/1.2464141
12.
Lu
,
Y.
,
Dhungel
,
A.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2009
, “
Effect of Trench Width and Depth on Film Cooling From Cylindrical Holes Embedded in Trenches
,”
ASME J. Turbomach.
,
131
(
1)
. p.
011003
. 10.1115/1.2950057
13.
Lu
,
Y.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2008
, “
Trench Film Cooling—Effect of Trench Downstream Edge and Hole Spacing
,”
ASME
Paper No. GT2008-50606. 10.1115/gt2008-50606
14.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2011
, “
Improved Trench Film Cooling With Shaped Trench Outlets
,”
ASME J. Turbomach.
,
135
(
2
), p.
021010
. 10.1115/1.4006606
15.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A. D.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2014
, “
Conjugate Heat Transfer Predictions of Effusion Cooling With Shaped Trench Outlet
,”
ASME
Paper No. GT2014-25257. 10.1115/gt2014-25257
16.
Kroess
,
B.
, and
Pfitzner
,
M.
,
2010
, “
Numerical and Experimental Investigation of the Film Cooling Effectiveness in a Novel Trench Configuration
,” ASME-ATI-UIT.
17.
Kroess
,
B.
, and
Pfitzner
,
M.
,
2012
, “
Numerical and Experimental Investigation of the Film Cooling Effectiveness and Temperature Field Behind a Novel Trench Configuration at High Blowing Ratio
,”
ASME
Paper No. GT2012-68125. 10.1115/gt2012-68125
18.
Li
,
J.
,
Ren
,
J.
, and
Jiang
,
H.
,
2010
, “
Film Cooling Performance of the Embedded Holes in Trenches With Compound Angles
,”
J. Eng. Thermophys.
,
31
(
2
), pp.
239
242
. 10.1115/gt2010-22337
19.
Davidson
,
F. T.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2014
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters and Trenches
,”
ASME J. Turbomach.
,
136
(
4)
. p.
041007
. 10.1115/1.4024883
20.
Schreivogel
,
P.
, and
Pfitzner
,
M.
,
2016
, “
Heat Transfer Measurements Downstream of Trenched Film Cooling Holes Using a Novel Optical Two-Layer Measurement Technique
,”
ASME J. Turbomach.
,
138
(
3
), p.
031003
. 10.1115/1.4031919
21.
Wei
,
J.
,
Zhu
,
H.
, and
Liu
,
C.
,
2016
, “
Experimental Study on the Film Cooling Characteristics of the Cylindrical Holes Embedded in Sine-Wave Shaped Trench
,” ASME Paper No. GT2016-56856. 10.1115/gt2016-56856
22.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
. 10.1126/science.1068609
23.
Liu
,
C.
,
Zhu
,
H.
,
Bai
,
J.
, and
Xu
,
D.
,
2011
, “
Film Cooling Performance of Converging-Slot Holes With Different Exit-Entry Area Ratios
,”
ASME J. Turbomach.
,
133
(
1
), p.
011020
. 10.1115/1.4000543
24.
Kline
,
S. J.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
25.
Le
,
B. P. V.
,
Launder
,
B. E.
, and
Priddin
,
C. H.
,
1971
, “
Discrete Hole Injection as a Means of Transpiration Cooling—An Experimental Study
,”
Heat Fluid Flow
,
3
(
2
), pp.
81
89
.
26.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
. 10.1115/1.2840937
You do not currently have access to this content.