Abstract

Windcatcher is an effective natural ventilation system, and its performance depends on several factors including wind speed and wind direction. It provides a comfortable and healthy indoor environment since the introduced fresh air decreases the moisture content and reduces the pollutant concentration. Since the wind speed and its direction are generally unpredictable, it is important to use special inlet forms and exits to increase the efficiency of a windcatcher. In this study, computational fluid dynamics (CFD) modeling is implemented using ansys fluent to investigate the airflow entering a three-dimensional room through a windcatcher with different inlet designs. Three designs are studied which are a uniform inlet, a divergent inlet, and a bulging-convergent inlet. The airflow pattern with all inlets provided adequate ventilation through the room. With all the applied wind velocities (1, 2, 3, and 6 m/s) at the domain's inlet, the divergent inlet shape has captured the highest airflow through the room and provided higher average velocity at 1.2 m high enhancing the thermal comfort where most of the human occupancy occurs. With 6 m/s wind velocity, the divergent inlet has captured 2.55% more flow rate compared to the uniform inlet and 4.70% compared to the bulging-convergent inlet, and it has also provided an average velocity at 1.2 m high in the room of 7.16% higher than the uniform inlet and 8.44% higher than the bulging-convergent inlet.

References

1.
Taghipour
,
R.
,
Abdo
,
P.
, and
Huynh
,
B. P.
,
2018
, “
Effect of Wind Speed on Ventilation Flow Through a Two Dimensional Room Fitted With a Windcatcher
,”
Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition IMECE2018
,
Pittsburgh, PA
,
Nov. 9–15
. https://doi.org/10.1115/IMECE2018-88666
2.
Stavridou
,
A. D.
,
2015
, “
Breathing Architecture: Conceptual Architectural Design Based on the Investigation Into the Natural Ventilation of Buildings
,”
Front. Archit. Res.
,
4
(
2
), pp.
127
145
. 10.1016/j.foar.2015.03.001
3.
Cheng
,
J.
,
Qi
,
D.
,
Katal
,
A.
,
Wang
,
L.
, and
Stathopoulos
,
T.
,
2018
, “
Evaluating Wind-Driven Natural Ventilation Potential for Early Building Design
,”
J. Wind Eng. Ind. Aerod.
,
182
, pp.
160
169
. 10.1016/j.jweia.2018.09.017
4.
Ayad
,
S. S.
,
1999
, “
Computational Study of Natural Ventilation
,”
J. Wind Eng. Ind. Aerod.
,
82
(
1
), pp.
49
68
. 10.1016/S0167-6105(98)00210-4
5.
Santamouris
,
M.
,
Papanikolaou
,
N.
,
Livada
,
I.
,
Koronakis
,
I.
,
Georgakis
,
C.
,
Argiriou
,
A.
, and
Assimakopoulos
,
D. N.
,
2001
, “
On the Impact of Urban Climate on the Energy Consumption of Buildings
,”
Sol. Energy
,
70
(
3
), pp.
201
216
. 10.1016/S0038-092X(00)00095-5
6.
Lakkas
,
T.
,
2008
,
Sustainable Cooling Techniques the State of Art
,
University of London, University College London (United Kingdom)
,
Ann Arbor, MI
.
7.
Kolokotroni
,
M.
,
Giannitsaris
,
I.
, and
Watkins
,
R.
,
2006
, “
The Effect of the London Urban Heat Island on Building Summer Cooling Demand and Night Ventilation Strategies
,”
Sol. Energy
,
80
(
4
), pp.
383
392
. 10.1016/j.solener.2005.03.010
8.
Angelis
,
N.
,
2005
, “
Solar Chimney Design: Investigating Natural Ventilation and Cooling in Offices With the Aid of Computer Simulation
,”
Doctoral thesis
,
UCL (University College London)
.
9.
Mora-Pérez
,
M.
,
Guillen-Guillamón
,
I.
,
López-Patiño
,
G.
, and
López-Jiménez
,
P.
,
2016
, “
Natural Ventilation Building Design Approach in Mediterranean Regions—A Case Study at the Valencian Coastal Regional Scale (Spain)
,”
Sustainability
,
8
(
9
), p.
855
. 10.3390/su8090855
10.
Khanal
,
R.
, and
Lei
,
C.
,
2011
, “
Solar Chimney—A Passive Strategy for Natural Ventilation
,”
Energy Build.
,
43
(
8
), pp.
1811
1819
. 10.1016/j.enbuild.2011.03.035
11.
Santamouris
,
M.
,
Mihalakakou
,
G.
, and
Asimakopoulos
,
D. N.
,
1997
, “
On the Coupling of Thermostatically Controlled Buildings With Ground and Night Ventilation Passive Dissipation Techniques
,”
Sol. Energy
,
60
(
3
), pp.
191
197
. 10.1016/S0038-092X(97)00009-1
12.
Hughes
,
B. R.
,
Chaudhry
,
H. N.
, and
Ghani
,
S. A.
,
2011
, “
A Review of Sustainable Cooling Technologies in Buildings
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
3112
3120
. 10.1016/j.rser.2011.03.032
13.
Yaghoubi
,
M. A.
,
Sabzevari
,
A.
, and
Golneshan
,
A. A.
,
1991
, “
Wind Towers: Measurement and Performance
,”
Sol. Energy
,
47
(
2
), pp.
97
106
. 10.1016/0038-092X(91)90040-4
14.
Bahadori
,
M. N.
,
Dehghani-Sanij
,
A. R.
, and
Sayigh
,
A.
,
2014
,
Wind Towers: Architecture, Climate and Sustainability
,
Springer International Publishing
,
Cham, Switzerland
.
15.
Bahadori
,
M. N.
,
Mazidi
,
M.
, and
Dehghani
,
A. R.
,
2008
, “
Experimental Investigation of New Designs of Wind Towers
,”
Renewable Energy
,
33
(
10
), pp.
2273
2281
. 10.1016/j.renene.2007.12.018
16.
Afshin
,
M.
,
Sohankar
,
A.
,
Manshadi
,
M. D.
, and
Esfeh
,
M. K.
,
2016
, “
An Experimental Study on the Evaluation of Natural Ventilation Performance of a Two-Sided Wind-Catcher for Various Wind Angles
,”
Renewable Energy
,
85
, pp.
1068
1078
. 10.1016/j.renene.2015.07.036
17.
Soltani
,
M.
,
Dehghani-Sanij
,
A.
,
Sayadnia
,
A.
,
Kashkooli
,
F. M.
,
Gharali
,
K.
,
Mahbaz
,
S.
, and
Dusseault
,
M. B.
,
2018
, “
Investigation of Airflow Patterns in a New Design of Wind Tower With a Wetted Surface
,”
Energies
,
11
(
5
), p.
1100
. 10.3390/en11051100
18.
Li
,
L.
, and
Mak
,
C. M.
,
2007
, “
The Assessment of the Performance of a Windcatcher System Using Computational Fluid Dynamics
,”
Build. Environ.
,
42
(
3
), pp.
1135
1141
. 10.1016/j.buildenv.2005.12.015
19.
Ahmed Kabir
,
I. F. S.
,
Kanagalingam
,
S.
, and
Safiyullah
,
F.
,
2017
, “
Performance Evaluation of Air Flow and Thermal Comfort in the Room With Wind-Catcher Using Different CFD Techniques Under Neutral Atmospheric Boundary Layer
,”
Energy Procedia
,
143
, pp.
199
203
. 10.1016/j.egypro.2017.12.671
20.
Niktash
,
A.
, and
Huynh
,
P.
,
2014
, “
Numerical Simulation and Analysis of the Two-Sided Windcatcher Inlet\Outlet Effect in Ventilation Flow Through a Three Dimensional Room
,”
Proceedings of the ASME 2014 Power Conference
,
Baltimore, MD
,
July 28–31
.
21.
Hughes
,
B. R.
, and
Cheuk-Ming
,
M.
,
2011
, “
A Study of Wind and Buoyancy Driven Flows Through Commercial Wind Towers
,”
Energy Build.
,
43
(
7
), pp.
1784
1791
. 10.1016/j.enbuild.2011.03.022
22.
Dehghani-sanij
,
A. R.
,
Soltani
,
M.
, and
Raahemifar
,
K.
,
2015
, “
A New Design of Wind Tower for Passive Ventilation in Buildings to Reduce Energy Consumption in Windy Regions
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
182
195
. 10.1016/j.rser.2014.10.018
23.
Abdo
,
P.
, and
Huynh
,
B. P.
,
2017
, “
Effect of Combining Buoyancy Driven and Winddriven Ventilation in a Two Dimensional Room Fitted With a Windcatcher
,”
ASME International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
. https://doi.org/10.1115/IMECE2017-70212
24.
Abdo
,
P.
,
Taghipour
,
R.
, and
Huynh
,
B. P.
,
2018
, “
Simulation of Buoyancy Driven and Winddriven Ventilation Flow in a Three Dimensional Room Fitted With a Windcatcher
,”
21st Australasian Fluid Mechanics Conference
,
Adelaide, Australia
,
Dec. 10–13
.
25.
Abdo
,
P.
,
Taghipour
,
R.
, and
Huynh
,
B. P.
,
2019
, “
Three Dimensional Simulation of Ventilation Flow Through a Solar Windcatcher
,”
The ASME—JSME—KSME Joint Fluids Engineering Conference 2019, AJKFLUIDS2019
,
San Francisco, CA
,
July 29–Aug. 1
.
26.
Gan
,
G.
,
2010
, “
Interaction Between Wind and Buoyancy Effects in Natural Ventilation of Buildings
,”
Open Construct. Build. Technol. J.
,
4
(
1
), pp.
134
145
. 10.2174/1874836801004010134
27.
Hughes
,
B. R.
, and
Ghani
,
S. A. A. A.
,
2008
, “
Investigation of a Windvent Passive Ventilation Device Against Current Fresh Air Supply Recommendations
,”
Energy Build.
,
40
(
9
), pp.
1651
1659
. 10.1016/j.enbuild.2008.02.024
28.
Hosseini
,
S. H.
,
Shokry
,
E.
,
Ahmadian Hosseini
,
A. J.
,
Ahmadi
,
G.
, and
Calautit
,
J. K.
,
2016
, “
Evaluation of Airflow and Thermal Comfort in Buildings Ventilated With Wind Catchers: Simulation of Conditions in Yazd City, Iran
,”
Energy Sustain. Dev.
,
35
, pp.
7
24
. 10.1016/j.esd.2016.09.005
29.
Spentzou
,
E.
,
Cook
,
M. J.
, and
Emmitt
,
S.
,
2018
, “
Natural Ventilation Strategies for Indoor Thermal Comfort in Mediterranean Apartments
,”
Build. Simulat.
,
11
(
1
), pp.
175
191
. 10.1007/s12273-017-0380-1
30.
Montazeri
,
H.
, and
Azizian
,
R.
,
2008
, “
Experimental Study on Natural Ventilation Performance of One-Sided Wind Catcher
,”
Build. Environ.
,
43
(
12
), pp.
2193
2202
. 10.1016/j.buildenv.2008.01.005
31.
Montazeri
,
H.
, and
Azizian
,
R.
,
2009
, “
Experimental Study on Natural Ventilation Performance of a Two-Sided Wind Catcher
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
4
), pp.
387
400
. 10.1243/09576509JPE651
32.
Montazeri
,
H.
,
Montazeri
,
F.
,
Azizian
,
R.
, and
Mostafavi
,
S.
,
2010
, “
Two-Sided Wind Catcher Performance Evaluation Using Experimental, Numerical and Analytical Modeling
,”
Renewable Energy
,
35
(
7
), pp.
1424
1435
. 10.1016/j.renene.2009.12.003
33.
Montazeri
,
H.
,
2011
, “
Experimental and Numerical Study on Natural Ventilation Performance of Various Multi-Opening Wind Catchers
,”
Build. Environ.
,
46
(
2
), pp.
370
378
. 10.1016/j.buildenv.2010.07.031
34.
Karava
,
P.
,
Stathopoulos
,
T.
, and
Athienitis
,
A. K.
,
2011
, “
Airflow Assessment in Cross-Ventilated Buildings With Operable Façade Elements
,”
Build. Environ.
,
46
(
1
), pp.
266
279
. 10.1016/j.buildenv.2010.07.022
35.
Montazeri
,
H.
, and
Montazeri
,
F.
,
2018
, “
CFD Simulation of Cross-Ventilation in Buildings Using Rooftop Wind-Catchers: Impact of Outlet Openings
,”
Renewable Energy
,
118
, pp.
502
520
. 10.1016/j.renene.2017.11.032
36.
Pearlmutter
,
D.
,
Erell
,
E.
, and
Etzion
,
Y.
,
2008
, “
A Multi-Stage Down-Draft Evaporative Cool Tower for Semi-Enclosed Spaces: Experiments With a Water Spraying System
,”
Sol. Energy
,
82
(
5
), pp.
430
440
. 10.1016/j.solener.2007.12.003
37.
Pearlmutter
,
D.
,
Erell
,
E.
,
Etzion
,
Y.
,
Meir
,
I. A.
, and
Di
,
H.
,
1996
, “
Refining the Use of Evaporation in an Experimental Down-Draft Cool Tower
,”
Energy Build.
,
23
(
3
), pp.
191
197
. 10.1016/0378-7788(95)00944-2
38.
Erell
,
E.
,
Pearlmutter
,
D.
, and
Etzion
,
Y.
,
2008
, “
A Multi-Stage Down-Draft Evaporative Cool Tower for Semi-Enclosed Spaces: Aerodynamic Performance
,”
Sol. Energy
,
82
(
5
), pp.
420
429
. 10.1016/j.solener.2007.10.010
39.
Issa
,
R. J.
, and
Chang
,
B.
,
2012
, “
Performance Prediction of a Multi-Stage Wind Tower for Indoor Cooling
,”
J. Therm. Sci.
,
21
(
4
), pp.
327
335
. 10.1007/s11630-012-0551-4
40.
Soutullo
,
S.
,
Olmedo
,
R.
,
Sánchez
,
M. N.
, and
Heras
,
M. R.
,
2011
, “
Thermal Conditioning for Urban Outdoor Spaces Through the Use of Evaporative Wind Towers
,”
Build. Environ.
,
46
(
12
), pp.
2520
2528
. 10.1016/j.buildenv.2011.06.003
41.
Soutullo
,
S.
,
Sanchez
,
M. N.
,
Olmedo
,
R.
, and
Heras
,
M. R.
,
2011
, “
Theoretical Model to Estimate the Thermal Performance of an Evaporative Wind Tower Placed in an Open Space
,”
Renewable Energy
,
36
(
11
), pp.
3023
3030
. 10.1016/j.renene.2011.03.035
42.
Soutullo
,
S.
,
Sanjuan
,
C.
, and
Heras
,
M. R.
,
2012
, “
Energy Performance Evaluation of an Evaporative Wind Tower
,”
Sol. Energy
,
86
(
5
), pp.
1396
1410
. 10.1016/j.solener.2012.02.001
43.
Khani
,
S. M. R.
,
Bahadori
,
M. N.
,
Dehghani-Sanij
,
A.
, and
Nourbakhsh
,
A.
,
2017
, “
Performance Evaluation of a Modular Design of Wind Tower With Wetted Surfaces
,”
Energies
,
10
(
7
), p.
845
. 10.3390/en10070845
44.
M.R.Khani
,
S.
,
Bahadori
,
M. N.
, and
Dehghani-Sanij
,
A. R.
,
2017
, “
Experimental Investigation of a Modular Wind Tower in Hot and Dry Regions
,”
Energy Sustain. Dev.
,
39
, pp.
21
28
. 10.1016/j.esd.2017.03.003
45.
Cruz-Salas
,
M. V.
,
Castillo
,
J. A.
, and
Huelsz
,
G.
,
2018
, “
Effect of Windexchanger Duct Cross-Section Area and Geometry on the Room Airflow Distribution
,”
J. Wind Eng. Ind. Aerod.
,
179
, pp.
514
523
. 10.1016/j.jweia.2018.06.022
46.
Abdo
,
P.
,
Taghipour
,
R.
, and
Huynh
,
B. P.
,
2018
, “
Effect of Windcatcher’s Inlet Shape on Ventilation Flow Through a two Dimensional Room
,”
Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Summer Conference FEDSM2018
,
Montreal, Quebec, Canada
,
July 15–20
.
47.
Abdo
,
P.
,
Taghipour
,
R.
, and
Huynh
,
B. P.
,
2019
, “
Three Dimensional Simulation of the Effect of Windcatcher’s Inlet Shape
,”
The ASME—JSME—KSME Joint Fluids Engineering Conference 2019, AJKFLUIDS2019
,
San Francisco, CA
,
July 29–Aug. 1
.
48.
Niktash
,
A. R.
, and
Huynh
,
B. P.
,
2011
, “
Numerical Study of Ventilation Flow Through a Two Dimensional Room Fitted With a Windcatcher
,”
ASME 2011 International Mechanical Engineering Congress & Exposition
,
Denver, CO
,
Nov. 11–17
.
49.
ANSYS
,
2017
,
ANSYS Fluent (Including Ansys CFD-Post) Release 18.2
.
50.
Franke
,
J.
,
Hellsten
,
A.
,
Schlunzen
,
K. H.
, and
Carissimo
,
B.
,
2011
, “
The COST 732 Best Practice Guideline for CFD Simulation of Flows in the Urban Environment: a Summary
,”
Int. J. Environ. Pollut.
,
44
(
1–4
), pp.
419
427
. 10.1504/IJEP.2011.038443
51.
ASHRAE
,
2010
,
ANSI/ASHRAE Standard 55-2010: Thermal Environmental Conditions for Human Occupancy
.
52.
Niktash
,
A.
, and
Huynh
,
B. P.
,
2017
, “
ICCM2015: A Comparison of RANS and LES Computational Methods in Analyzing Ventilation Flow Through a Room Fitted With a Two-Sided Windcatcher
,”
Int. J. Comput. Methods
,
14
(
3
), p.
1750021
. 10.1142/S0219876217500219
53.
Niktash
,
A. R.
,
2016
,
Investigation Into Two-Sided Windcatchers Used for Room Ventilation
,
University of Technology Sydney
,
Sydney
.
54.
Esfeh
,
M. K.
,
Dehghan
,
A. A.
,
Manshadi
,
M. D.
, and
Mohagheghian
,
S.
,
2012
, “
Visualized Flow Structure Around and Inside of One-Sided Wind-Catchers
,”
Energy Build.
,
55
, pp.
545
552
. 10.1016/j.enbuild.2012.09.015
You do not currently have access to this content.