Abstract

A simple and effective technique is proposed to enhance the heat transfer rate significantly. The current study deals with the analysis of a fluid flow and thermal characteristics of a turbulent dual jet impinging on a wavy surface. The surface area of the wall has been varied by considering different wavy profiles. The amplitude of the wavy surface is varied between 0.1 and 0.7 with an interval of 0.1. The number of cycles and the offset ratio (OR) are fixed to 10 and 7, respectively, thus, providing a complete parametric analysis of flow characteristics and thermal characteristics of the turbulent dual jet. The decay of maximum streamwise velocity, the variation of bottom wall pressure, and the variation of local heat flux and local Nusselt number have been computed. The variation of the bottom wall temperature for adiabatic wavy wall boundary condition for various amplitudes are also presented in this paper. It is found that the pressure decreases in the recirculation region when the amplitude increases. There is a sudden drop in pressure in the recirculation region when the wavy surface is present as compared with the dual jet with a plane wall surface and this drop goes on increasing as the amplitude increases. The wavy surface provides a favorable condition for the flow which results in the increased flow strength. The increase in the flow strength ultimately enhances the heat transfer rate. But, the increase in heat transfer is not monotonous. The heat transfer rate increases till the amplitude 0.5 thereafter it decreases. A maximum increase of 12% in the heat transfer rate is observed at A = 0.5. It is hoped that the present study opens a new line for the industries which deal with the cooling phenomenon.

References

1.
Holland
,
J. T.
, and
Liburdy
,
J. A.
,
1990
, “
Measurements of the Thermal Characteristics of Heated Offset Jets
,”
Int. J. Heat Mass Transfer
,
33
(
1
), pp.
69
78
. 10.1016/0017-9310(90)90142-H
2.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2013
, “
Comparison of Two Low Reynolds Number Turbulence Models for Fluid Flow Study of Wall Bounded Jets
,”
Int. J. Heat Mass Transfer
,
61
, pp.
365
380
. 10.1016/j.ijheatmasstransfer.2013.01.062
3.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1997
, “
Comparison of Flow Characteristics in the Near Field of Two Parallel Plane Jets and an Offset Jet
,”
Phys. Fluids
,
9
(
10
), pp.
2919
2931
. 10.1063/1.869404
4.
Anderson
,
E. A.
, and
Spall
,
R. E.
,
2001
, “
Experimental and Numerical Investigation of Two-Dimensional Parallel Jets
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
401
406
. 10.1115/1.1363701
5.
Kumar
,
A.
,
2015
, “
Mean Flow Characteristics of a Turbulent Dual Jet Consisting of a Plane Wall Jet and a Parallel Offset Jet
,”
Comput. Fluids
,
114
, pp.
48
65
. 10.1016/j.compfluid.2015.02.017
6.
Kumar
,
A.
,
2015
, “
Mean Flow and Thermal Characteristics of a Turbulent Dual Jet Consisting of a Plane Wall Jet and a Parallel Offset Jet
,”
Numer. Heat Transfer: Part A
,
67
(
10
), pp.
1075
1096
. 10.1080/10407782.2014.955348
7.
Chaab
,
M. A.
, and
Tachie
,
M. F.
,
2011
, “
Characteristics of Turbulent Three-Dimensional Offset Jets
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051203
. 10.1115/1.4004071
8.
Rajaratnam
,
N.
,
1976
,
Turbulent Jets
,
Elsevier Scientific Publishing Company
,
New York
.
9.
Chaab
,
M. A.
, and
Tachie
,
M. F.
,
2011
, “
Characteristics of Turbulent Three-Dimensional Wall Jets
,”
ASME J. Fluids Eng.
,
133
(
2
), p.
021201
. 10.1115/1.4003277
10.
Sforza
,
P. M.
, and
Herbst
,
G.
,
1969
, “
A Study of Three-Dimensional, Incompressible, Turbulent Wall Jets
,”
Am. Inst. Aeronaut. Astronaut. (AIAA) J.
,
8
(
2
), pp.
276
282
. 10.2514/3.5656
11.
George
,
W. K.
,
Abrahamsson
,
H.
,
Eriksson
,
J.
,
Karlsson
,
R. I.
,
Lofdahl
,
L.
, and
Wosnik
,
M.
,
2000
, “
A Similarity Theory for the Turbulent Plane Wall Jet Without External Stream
,”
J. Fluid Mech.
,
425
, pp.
367
411
. 10.1017/S002211200000224X
12.
Gogineni
,
S.
, and
Shih
,
C.
,
1997
, “
Experimental Investigation of the Unsteady Structure of a Transitional Plane Wall Jet
,”
Exp. Fluids
,
23
(
2
), pp.
121
129
. 10.1007/s003480050093
13.
Lai
,
J. C. S.
, and
Lu
,
D.
,
1992
, “The Near Field Characteristics of a Two-Dimensional Wall Jet,”
Recent Advances in Experimental Fluid Mechanics
,
F. G.
Zhuang
, ed.,
International Academic Publishers
,
China
, pp.
136
141
.
14.
Tritton
,
D. J.
,
1977
,
Physical Fluid Dynamics
,
Von Norstrand Reinhold, UK
, pp.
284
286
.
15.
Isman
,
M. K.
,
Morris
,
P. J.
, and
Can
,
M.
,
2016
, “
Investigation of Laminar to Turbulent Transition Phenomena Effects on Impingement Heat Transfer
,”
Heat Mass Transfer
,
52
(
10
), pp.
2027
2036
. 10.1007/s00231-015-1719-8
16.
Ozmen
,
Y.
, and
Ipek
,
G.
,
2016
, “
Investigation of Flow Structure and Heat Transfer Characteristics in an Array of Impinging Slot Jets
,”
Heat Mass Transfer
,
53
(
4
), pp.
773
787
. 10.1007/s00231-015-1598-z
17.
Rim
,
B. K.
,
Said
,
N. M.
,
Bournot
,
H.
, and
Palec
,
G. L.
,
2017
, “
Effect of Nozzle to Plate Spacing on the Development of a Plane Jet Impinging on a Heated Plate
,”
Heat Mass Transfer
,
53
(
4
), pp.
1305
1314
. 10.1007/s00231-016-1904-4
18.
Meda
,
A.
, and
Katti
,
V. V.
,
2017
, “
Local Distribution of Wall Static Pressure and Heat Transfer on a Rough Flat Plate Impinged by a Slot Air Jet
,”
Heat Mass Transfer
,
53
(
8
), pp.
2497
2515
. 10.1007/s00231-017-1999-2
19.
Sawyer
,
R. A.
,
1960
, “
The Flow Due to a Two-Dimensional Jet Issuing Parallel to a Flat Plate
,”
J. Fluid Mech.
,
9
(
4
), pp.
543
559
. 10.1017/S0022112060001304
20.
Sawyer
,
R. A.
,
1963
, “
Two-Dimensional Reattaching jet Flows Including the Effects of Curvature on Entrainment
,”
J. Fluid Mech.
,
17
(
4
), pp.
481
498
. 10.1017/S0022112063001464
21.
Pelfrey
,
J. R. R.
, and
Liburdy
,
J. A.
,
1986
, “
Effect of Curvature on the Turbulence of a Two-Dimensional Jet
,”
Exp. Fluids
,
4
(
3
), pp.
143
149
. 10.1007/BF00280264
22.
Pelfrey
,
J. R. R.
, and
Liburdy
,
J. A.
,
1986
, “
Mean Flow Characteristics of a Turbulent Offset Jet
,”
ASME J. Fluids Eng.
,
108
(
1
), pp.
82
88
. 10.1115/1.3242548
23.
Vishnuvardhanarao
,
E.
, and
Das
,
M. K.
,
2009
, “
Conjugate Heat Transfer Study of Incompressible Turbulent Offset Jet Flows
,”
Heat Mass Transfer
,
45
(
9
), pp.
1141
1152
. 10.1007/s00231-009-0486-9
24.
Gao
,
N.
, and
Ewing
,
D.
,
2007
, “
Experimental Investigation of Planar Offset Attaching Jets With Small Offset Distances
,”
Exp. Fluids
,
42
(
6
), pp.
941
954
. 10.1007/s00348-007-0305-3
25.
Gao
,
N.
, and
Ewing
,
D.
,
2008
, “
On the Phase Velocities of the Motions in an Offset Attaching Planar Jet
,”
J. Turbul.
,
9
(
27
), pp.
1
21
.
26.
Assoudi
,
A.
,
Habli
,
S.
,
Said
,
N. M.
,
Bournot
,
H.
, and
Palec
,
H.
,
2015
, “
Experimental and Numerical Study of an Offset Jet With Different Velocity and Offset Ratios
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
490
512
. 10.1080/19942060.2015.1071525
27.
Kim
,
D. S.
,
Yoon
,
S. H.
,
Lee
,
D. H.
, and
Kim
,
K. C.
,
1996
, “
Flow and Heat Transfer Measurements of a Wall Attaching Offset Jet
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2907
2913
. 10.1016/0017-9310(95)00383-5
28.
Pramanik
,
S.
, and
Das
,
M. K.
,
2013
, “
Numerical Characterization of a Planar Turbulent Offset Jet Over an Oblique Wall
,”
Comput. Fluids
,
77
, pp.
36
55
. 10.1016/j.compfluid.2013.02.007
29.
Wang
,
X. K.
, and
Tan
,
S. K.
,
2007
, “
Experimental Investigation of the Interaction Between a Plane Wall Jet and a Parallel Offset Jet
,”
Exp. Fluids
,
42
(
4
), pp.
551
562
. 10.1007/s00348-007-0263-9
30.
Kumar
,
A.
, and
Das
,
M. K.
,
2011
, “
Study of a Turbulent Dual Jet Consisting of a Wall Jet and an Offset Jet
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101201
. 10.1115/1.4004823
31.
Mondal
,
T.
,
Guha
,
A.
, and
Das
,
M. K.
,
2015
, “
Analysis of Conjugate Heat Transfer for Combined Wall Jet and Offset Jet
,”
ASME J. Heat Transfer
,
138
(
5
), p.
051701
. 10.1115/1.4032287
32.
Mondal
,
T.
,
Guha
,
A.
, and
Das
,
M. K.
,
2015
, “
Computational Study of Periodically Unsteady Interaction Between a Wall Jet and an Offset Jet for Various Velocity Ratios
,”
Comput. Fluids
,
123
, pp.
146
161
. 10.1016/j.compfluid.2015.09.015
33.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2017
, “
CFD Investigation on the Offset Ratio Effect on Thermal Characteristics of a Combined Wall and Offset Jets Flow
,”
Heat Mass Transfer
,
53
(
8
), pp.
2531
2549
. 10.1007/s00231-017-2000-0
34.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2017
, “
Wall Inclination Effect in Heat Transfer Characteristics of a Combined Wall and Offset Jet Flow
,”
Int. J. Heat Fluid Flow
,
64
, pp.
66
78
. 10.1016/j.ijheatfluidflow.2017.01.010
35.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2018
, “
Numerical Investigation of Velocity Ratio Effect in Combined Wall and Offset Jet Flows
,”
J. Hydrodyn.
,
30
(
6
), pp.
774
781
. 10.1007/s42241-018-0136-0
36.
Hnaien
,
N.
,
Marzouk
,
S.
,
Kolsi
,
L.
,
Al-Rashed
,
A. A. A. A.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2018
, “
Numerical Study and Correlations Development on Twin-Parallel Jets Flow With Non-Equal Outlet Velocities
,”
Front. Heat Mass Transfer
,
11
(
8
), pp.
1
11
.
37.
Assoudi
,
A.
,
Said
,
N. M.
,
Bournot
,
H.
, and
Palec
,
G. L.
,
2018
, “
Comparative Study of Flow Characteristics of a Single Offset Jet and a Turbulent Dual Jet
,”
Heat Mass Transfer
,
55
, pp.
1109
1131
.
38.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
. 10.1016/0045-7825(74)90029-2
39.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1998
, “
A Turbulent Plane Offset Jet With Small Offset Ratio
,”
Exp. Fluids
,
24
(
1
), pp.
47
57
. 10.1007/s003480050149
40.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
41.
Vishnuvardhanarao
,
E.
, and
Das
,
M. K.
,
2009
, “
Study of the Heat Transfer Characteristics in a Turbulent Combined Wall and Offset Jet Flows
,”
Int. J. Therm. Sci.
,
48
(
10
), pp.
1949
1959
. 10.1016/j.ijthermalsci.2009.02.020
42.
Mondal
,
T.
,
Guha
,
A.
, and
Das
,
M. K.
,
2016
, “
Effect of Bottom Wall Proximity on the Unsteady Flow Structures of a Combined Turbulent Wall Jet and Offset Jet Flow
,”
Eur. J. Mech. Fluids
,
57
, pp.
101
114
. 10.1016/j.euromechflu.2015.12.003
43.
Song
,
H. B.
,
Yoon
,
S. H.
, and
Lee
,
D. H.
,
2000
, “
Flow and Heat Transfer Characteristics of a Two-Dimensional Oblique Wall Attaching Offset Jet
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2395
2404
. 10.1016/S0017-9310(99)00312-9
44.
Wygnanski
,
I.
,
Katz
,
Y.
, and
Horev
,
E.
,
1992
, “
On the Applicability of Various Scaling Laws to the Turbulent Wall Jet
,”
J. Fluid Mech.
,
234
(
1
), pp.
669
690
. 10.1017/S002211209200096X
45.
Kaffel
,
A.
,
Moureh
,
J.
,
Harion
,
J.
, and
Russeil
,
S.
,
2015
, “
Experimental Investigation of a Plane Wall Jet Subjected to an External Lateral Flow
,”
Exp. Fluids
,
56
(
95
), pp.
1
19
.
You do not currently have access to this content.