Abstract

Phase change materials (PCMs) are considered to be promising contenders for thermal energy storage (TES) due to their high latent heat and nearly constant temperature during the intake/release of heat. The present study focuses on providing the most suitable PCM for low-temperature (40–80 °C) heat storage applications. However, the selection of the most suitable one from the wide range of PCMs for an application needs a thorough insight of their thermophysical properties, thermal stability, compatibility, and melting and solidification behavior. Among the PCMs available for low-temperature heat storage applications, organic PCMs stand as an attractive option. Based on melting point temperature, latent heat, cost, and ease of availability, five widely used organic PCMs, viz., lauric acid (LA), myristic acid (MA), stearic acid (SA), paraffin wax (PW), and palmitic acid (PA), are selected. Initially, thermophysical properties are measured and tabulated. Subsequently, thermal stability experiments up to 1500 melting/freezing cycles, compatibility studies with container materials (aluminum and stainless steel (SS)), and melting and solidification experiments giving total melting and solidification times are performed. Further, a hybrid multiple attribute decision-making (MADM) method is employed to select the best PCM based on the obtained experimental results. During the selection process at first, the subjective weights of the attributes are measured according to the analytical hierarchy process (AHP). Later, the PCMs are ranked based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The hybrid MADM results show that among the selected PCMs, paraffin wax is the optimal PCM for low-temperature heat storage applications.

References

1.
Nazir
,
H.
,
Batool
,
M.
,
Bolivar Osorio
,
F. J.
,
Isaza-Ruiz
,
M.
,
Xu
,
X.
,
Vignarooban
,
K.
,
Phelan
,
P.
,
Inamuddin
, and
Kannan
,
A. M.
,
2019
, “
Recent Developments in Phase Change Materials for Energy Storage Applications: A Review
,”
Int. J. Heat Mass Transfer
,
129
, pp.
491
523
. 10.1016/j.ijheatmasstransfer.2018.09.126
2.
Xu
,
T.
,
Chiu
,
J. N.
,
Palm
,
B.
, and
Sawalha
,
S.
,
2019
, “
Experimental Investigation on Cylindrically Macro-Encapsulated Latent Heat Storage for Space Heating Applications
,”
Energy Convers. Manage.
,
182
, pp.
166
177
. 10.1016/j.enconman.2018.12.056
3.
Mawire
,
A.
,
Lentswe
,
K.
,
Okello
,
D.
,
Lugolole
,
R.
,
Nyeinga
,
K.
, and
Shobo
,
A.
,
2019
, “
Dynamic Thermal Performance of Four Encapsulated PCM Spheres for Domestic Medium Temperature Applications
,”
Energy Proc.
,
158
, pp.
4375
4382
. 10.1016/j.egypro.2019.01.781
4.
Wu
,
W.
,
Dai
,
S.
,
Liu
,
Z.
,
Dou
,
Y.
,
Hua
,
J.
,
Li
,
M.
,
Wang
,
X. X.
, and
Wang
,
X. X.
,
2018
, “
Experimental Study on the Performance of a Novel Solar Water Heating System With and Without PCM
,”
Sol. Energy
,
171
(
April
), pp.
604
612
. 10.1016/j.solener.2018.07.005
5.
Behi
,
M.
,
Mirmohammadi
,
S. A.
,
Ghanbarpour
,
M.
,
Behi
,
H.
, and
Palm
,
B.
,
2018
, “
Evaluation of a Novel Solar Driven Sorption Cooling/Heating System Integrated With PCM Storage Compartment
,”
Energy
,
164
, pp.
449
464
. 10.1016/j.energy.2018.08.166
6.
Jaya Krishna
,
D.
,
2018
, “
Operational Time and Melt Fraction Based Optimization of a Phase Change Material Longitudinal Fin Heat Sink
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), pp.
1
4
. 10.1115/1.4040988
7.
Markandeyulu
,
T.
,
Devanuri
,
J. K.
, and
Kiran Kumar
,
K.
,
2016
, “
On the Suitability of Phase Change Material (PCM) for Thermal Management of Electronic Components
,”
Indian J. Sci. Technol.
,
9
(
S1
), pp.
1
4
. 10.17485/ijst/2016/v9iS1/107939
8.
Du
,
K.
,
Calautit
,
J.
,
Wang
,
Z.
,
Wu
,
Y.
, and
Liu
,
H.
,
2018
, “
A Review of the Applications of Phase Change Materials in Cooling, Heating and Power Generation in Different Temperature Ranges
,”
Appl. Energy
,
220
, pp.
242
273
. 10.1016/j.apenergy.2018.03.005
9.
Zhang
,
N.
,
Yuan
,
Y.
,
Cao
,
X.
,
Du
,
Y.
,
Zhang
,
Z.
, and
Gui
,
Y.
,
2018
, “
Latent Heat Thermal Energy Storage Systems With Solid–Liquid Phase Change Materials: A Review
,”
Adv. Eng. Mater.
,
20
(
6
), pp.
1
30
. 10.1002/adem.201700753
10.
Sarbu
,
I.
, and
Dorca
,
A.
,
2018
, “
Review on Heat Transfer Analysis in Thermal Energy Storage Using Latent Heat Storage Systems and Phase Change Materials
,”
Int. J. Energy Res.
,
43
(
1
), pp.
29
64
. 10.1002/er.4196
11.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manag.
,
45
(
9–10
), pp.
1597
1615
. 10.1016/j.enconman.2003.09.015
12.
Salunkhe
,
P. B.
, and
Jaya Krishna
,
D.
,
2017
, “
Investigations on Latent Heat Storage Materials for Solar Water and Space Heating Applications
,”
J. Energy Storage
,
12
, pp.
243
260
. 10.1016/j.est.2017.05.008
13.
Tao
,
Y. B. B.
, and
He
,
Y.-L. L.
,
2018
, “
A Review of Phase Change Material and Performance Enhancement Method for Latent Heat Storage System
,”
Renew. Sustain. Energy Rev.
,
93
, pp.
245
259
. 10.1016/j.rser.2018.05.028
14.
Rastogi
,
M.
,
Chauhan
,
A.
,
Vaish
,
R.
, and
Kishan
,
A.
,
2015
, “
Selection and Performance Assessment of Phase Change Materials for Heating, Ventilation and Air-Conditioning Applications
,”
Energy Convers. Manage.
,
89
, pp.
260
269
. 10.1016/j.enconman.2014.09.077
15.
Zalba
,
B.
,
Marín
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
. 10.1016/S1359-4311(02)00192-8
16.
Kahwaji
,
S.
,
Johnson
,
M. B.
,
Kheirabadi
,
A. C.
,
Groulx
,
D.
, and
White
,
M. A.
,
2017
, “
Fatty Acids and Related Phase Change Materials for Reliable Thermal Energy Storage at Moderate Temperatures
,”
Sol. Energy Mater. Sol. Cells
,
167
, pp.
109
120
. 10.1016/j.solmat.2017.03.038
17.
Kahwaji
,
S.
,
Johnson
,
M. B.
,
Kheirabadi
,
A. C.
,
Groulx
,
D.
, and
White
,
M. A.
,
2018
, “
A Comprehensive Study of Properties of Paraffin Phase Change Materials for Solar Thermal Energy Storage and Thermal Management Applications
,”
Energy
,
162
, pp.
1169
1182
. 10.1016/j.energy.2018.08.068
18.
Vasu
,
A.
,
Hagos
,
F. Y.
,
Mamat
,
R.
,
Kaur
,
J.
, and
Noor
,
M. M.
,
2019
, “
The Effect of Thermal Cyclic Variation on the Thermophysical Property Degradation of Paraffin as a Phase Changing Energy Storage Material
,”
Appl. Therm. Eng.
,
149
, pp.
22
33
. 10.1016/j.applthermaleng.2018.12.033
19.
Jaya Krishna
,
D.
, and
Kochar
,
S.
,
2017
, “
The Metallographic Study of Corrosion of Metals With Latent Heat Storage Materials Suitable for Solar Hot Water System
,”
Trans. Indian Ceram. Soc.
,
76
(
2
), pp.
133
141
. 10.1080/0371750X.2016.1268072
20.
Kenisarin
,
M. M.
,
Mahkamov
,
K.
,
Costa
,
S. C.
, and
Makhkamova
,
I.
,
2020
, “
Melting and Solidification of PCMs Inside a Spherical Capsule: A Critical Review
,”
J. Energy Storage
,
27
, p.
101082
. 10.1016/j.est.2019.101082
21.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2018
, “
Influence of Operational and Design Parameters on the Performance of a PCM Based Heat Exchanger for Thermal Energy Storage—A Review
,”
J. Energy Storage
,
20
, pp.
497
519
. 10.1016/j.est.2018.10.024
22.
Sarı
,
A.
, and
Bicer
,
A.
,
2012
, “
Thermal Energy Storage Properties and Thermal Reliability of Some Fatty Acid Esters/Building Material Composites as Novel Form-Stable PCMs
,”
Sol. Energy Mater. Sol. Cells
,
101
, pp.
114
122
. 10.1016/j.solmat.2012.02.026
23.
Tzeng
,
G.-H.
, and
Huang
,
J.-J.
,
2011
,
Multiple Attribute Decision Making
,
CRC Press
,
New York
.
24.
Ilbahar
,
E.
,
Cebi
,
S.
, and
Kahraman
,
C.
,
2019
, “
A State-of-the-Art Review on Multi-Attribute Renewable Energy Decision Making
,”
Energy Strateg. Rev.
,
25
, pp.
18
33
. 10.1016/j.esr.2019.04.014
25.
Kumar
,
A.
,
Sah
,
B.
,
Singh
,
A. R.
,
Deng
,
Y.
,
He
,
X.
,
Kumar
,
P.
, and
Bansal
,
R. C.
,
2017
, “
A Review of Multi Criteria Decision Making (MCDM) Towards Sustainable Renewable Energy Development
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
596
609
. 10.1016/j.rser.2016.11.191
26.
Rathod
,
M. K.
, and
Kanzaria
,
H. V.
,
2011
, “
A Methodological Concept for Phase Change Material Selection Based on Multiple Criteria Decision Analysis With and Without Fuzzy Environment
,”
Mater. Des.
,
32
(
6
), pp.
3578
3585
. 10.1016/j.matdes.2011.02.040
27.
Socaciu
,
L.
,
Giurgiu
,
O.
,
Banyai
,
D.
, and
Simion
,
M.
,
2016
, “
PCM Selection Using AHP Method to Maintain Thermal Comfort of the Vehicle Occupants
,”
Energy Proc.
,
85
, pp.
489
497
. 10.1016/j.egypro.2015.12.232
28.
Xu
,
H.
,
Romagnoli
,
A.
, and
Py
,
X.
,
2017
, “
Application of Material Assessment Methodology in Latent Heat Thermal Energy Storage for Waste Heat Recovery
,”
Appl. Energy
,
187
, pp.
281
290
. 10.1016/j.apenergy.2016.11.070
29.
Yang
,
K.
,
Zhu
,
N.
,
Chang
,
C.
,
Wang
,
D.
,
Yang
,
S.
, and
Ma
,
S.
,
2018
, “
A Methodological Concept for Phase Change Material Selection Based on Multi-Criteria Decision Making (MCDM): A Case Study
,”
Energy
,
165
, pp.
1085
1096
. 10.1016/j.energy.2018.10.022
30.
Shokouhmand
,
H.
, and
Kamkari
,
B.
,
2013
, “
Experimental Investigation on Melting Heat Transfer Characteristics of Lauric Acid in a Rectangular Thermal Storage Unit
,”
Exp. Therm. Fluid Sci.
,
50
(
50
), pp.
201
222
. 10.1016/j.expthermflusci.2013.06.010
31.
LaCombe
,
J. C.
,
Oudemool
,
J. L.
,
Koss
,
M. B.
,
Bushnel
,
L. T.
, and
Glicksman
,
M. E.
,
1997
, “
Measurement of Thermal Expansion in Liquid Succinonitrile and Pivalic Acid
,”
J. Cryst. Growth
,
173
(
1–2
), pp.
167
171
. 10.1016/S0022-0248(96)00774-9
32.
Uma Maheswararao
,
G.
,
Majumadar
,
A.
,
Niphadkar
,
T.
, and
Jaya Krishna
,
D.
,
2019
, “
An Image Processing Algorithm to Estimate the Melt Fraction and Energy Storage of a PCM Enclosed in a Spherical Capsule
,”
Int. J. Energy Res.
,
43
(
10
), pp.
5535
5547
. 10.1002/er.4668
33.
Khan
,
M. M. A.
,
Ibrahim
,
N. I.
,
Saidur
,
R.
,
Mahbubul
,
I. M.
, and
Al-Sulaiman
,
F. A.
,
2016
, “
Performance Assessment of a Solar Powered Ammonia–Water Absorption Refrigeration System With Storage Units
,”
Energy Convers. Manage.
,
126
, pp.
316
328
. 10.1016/j.enconman.2016.08.004
34.
Caron-Soupart
,
A.
,
Fourmigué
,
J. F.
,
Marty
,
P.
, and
Couturier
,
R.
,
2016
, “
Performance Analysis of Thermal Energy Storage Systems Using Phase Change Material
,”
Appl. Therm. Eng.
,
98
, pp.
1286
1296
. 10.1016/j.applthermaleng.2016.01.016
35.
Kline
,
S.
, and
Mcclintock
,
F.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
36.
Gao
,
Z.
,
Yao
,
Y.
, and
Wu
,
H.
,
2019
, “
A Visualization Study on the Unconstrained Melting of Paraffin in Spherical Container
,”
Appl. Therm. Eng.
,
155
, pp.
428
436
. 10.1016/j.applthermaleng.2019.03.160
37.
Shmueli
,
H.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2010
, “
Melting in a Vertical Cylindrical Tube: Numerical Investigation and Comparison With Experiments
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4082
4091
. 10.1016/j.ijheatmasstransfer.2010.05.028
38.
Fan
,
L.-W.
,
Zhu
,
Z.-Q.
,
Zeng
,
Y.
,
Ding
,
Q.
, and
Liu
,
M.-J.
,
2016
, “
Unconstrained Melting Heat Transfer in a Spherical Container Revisited in the Presence of Nano-Enhanced Phase Change Materials (NePCM)
,”
Int. J. Heat Mass Transfer
,
95
, pp.
1057
1069
. 10.1016/j.ijheatmasstransfer.2016.01.013
39.
Ghosh
,
D.
, and
Guha
,
C.
,
2019
, “
Numerical and Experimental Investigation of Paraffin Wax Melting in Spherical Cavity
,”
Heat Mass Transf. und Stoffuebertragung
,
55
(
5
), pp.
1427
1437
. 10.1007/s00231-018-2522-0
40.
Browne
,
M. C.
,
Boyd
,
E.
, and
McCormack
,
S. J.
,
2017
, “
Investigation of the Corrosive Properties of Phase Change Materials in Contact With Metals and Plastic
,”
Renew. Energy
,
108
, pp.
555
568
. 10.1016/j.renene.2017.02.082
41.
Jaya Krishna
,
D.
, and
Shinde
,
A.
,
2017
, “
Step by Step Methodology for the Assessment of Metal Corrosion Rate with PCMs Suitable for low Temperature Heat Storage Applications
,”
Mater. Today Proc.
,
4
(
9
), pp.
10039
10042
. 10.1016/j.matpr.2017.06.317
42.
Rao
,
R. V.
, and
Davim
,
J. P.
,
2008
, “
A Decision-Making Framework Model for Material Selection Using a Combined Multiple Attribute Decision-Making Method
,”
Int. J. Adv. Manuf. Technol.
,
35
(
7–8
), pp.
751
760
. 10.1007/s00170-006-0752-7
43.
Kumar
,
R. S.
, and
Krishna
,
D. J.
,
2013
, “
Differential Scanning Calorimetry (DSC) Analysis of Latent Heat Storage Materials for low Temperature (40-80 °C) Solar Heating Applications
,”
Int. J. Eng. Res. Technol.
,
2
(
8
), pp.
429
455
.
44.
Al-Shannaq
,
R.
,
Kurdi
,
J.
,
Al-Muhtaseb
,
S.
,
Dickinson
,
M.
, and
Farid
,
M.
,
2015
, “
Supercooling Elimination of Phase Change Materials (PCMs) Microcapsules
,”
Energy
,
87
, pp.
654
662
. 10.1016/j.energy.2015.05.033
45.
Prabakaran
,
R.
,
Prasanna Naveen Kumar
,
J.
,
Mohan Lal
,
D.
,
Selvam
,
C.
, and
Harish
,
S.
,
2019
, “
Constrained Melting of Graphene-Based Phase Change Nanocomposites Inside a Sphere
,”
ASME J. Therm. Anal. Calorim.
,
4
(
2
), pp.
941
952
. 10.1007/s10973-019-08458-4
46.
Fauzi
,
H.
,
Metselaar
,
H. S. C.
,
Mahlia
,
T. M. I.
,
Silakhori
,
M.
, and
Ong
,
H. C.
,
2015
, “
Thermal Characteristic Reliability of Fatty Acid Binary Mixtures as Phase Change Materials (PCMs) for Thermal Energy Storage Applications
,”
Appl. Therm. Eng.
,
80
, pp.
127
131
. 10.1016/j.applthermaleng.2015.01.047
47.
Rao
,
R. V.
,
2008
, “
A Decision Making Methodology for Material Selection Using an Improved Compromise Ranking Method
,”
Mater. Des.
,
29
(
10
), pp.
1949
1954
. 10.1016/j.matdes.2008.04.019
48.
Mehling
,
H.
, and
Cabeza
,
L. F.
,
2008
, “
Heat and Cold Storage With PCM. An up to Date Introduction Into Basics and Applications
,”
Springer
,
New York
, pp.
11
104
. 10.1007/978-3-540-68557-9_7
You do not currently have access to this content.