Abstract

Microchannels have many applications in the field of modern technologies. Today, it is necessary to increase the efficiency of these systems due to the increasing rate of thermal loads. Recent researches have shown that liquid flows in the microchannels depend on their size and surface properties. Consequently, there is no symmetric flow condition in a symmetric geometric channel necessarily. In this study, the effect of slip length on the amount of asymmetric heat transfer in a microchannel is investigated numerically. By calculating the parameters such as Nusselt number and local pressure drop coefficient, it is observed that the asymmetric slip flow affects the flow profile and could lead to a decrease or increase in the heat transfer in the microchannel. According to the results, asymmetric slip flow can lead to a 20–40% reduction or increase in the Nusselt number. The most important point in the design of micro-scale asymmetric cooling systems is the increase of slip length at high temperatures.

References

1.
Usefian
,
A.
,
Bayareh
,
M.
,
Shateri
,
A.
, and
Taheri
,
N.
,
2019
, “
Numerical Study of Electro-Osmotic Micro-Mixing of Newtonian and Non-Newtonian Fluids
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
5
), p.
238
. 10.1007/s40430-019-1739-2
2.
Usefian
,
A.
, and
Bayareh
,
M.
,
2019
, “
Numerical and Experimental Study on Mixing Performance of a Novel Electro-Osmotic Micro-Mixer
,”
Meccanica
,
54
(
8
), pp.
1149
1162
. 10.1007/s11012-019-01018-y
3.
Usefian
,
A.
,
Bayareh
,
M.
, and
Ahmadi Nadooshan
,
A.
,
2019
, “
Rapid Mixing of Newtonian and Non-Newtonian Fluids in a Three-Dimensional Micro-Mixer Using Non-Uniform Magnetic Field
,”
J. Heat Mass Transf. Res.
,
6
(
1
), pp.
55
61
.
4.
Hendy
,
S. C.
,
Jasperse
,
M.
, and
Burnell
,
J.
,
2005
, “
Effect of Patterned Slip on Micro- and Nanofluidic Flows
,”
Phys. Rev. E
,
72
(
1
), p.
016303
. 10.1103/PhysRevE.72.016303
5.
Hendy
,
S. C.
, and
Lund
,
N. J.
,
2007
, “
Effective Slip Boundary Conditions for Flows Over Nanoscale Chemical Heterogeneities
,”
Phys. Rev. E
,
76
(
6
), p.
066313
. 10.1103/PhysRevE.76.066313
6.
Qi
,
H.
,
Liang
,
A.
,
Jiang
,
H.
,
Chong
,
X.
, and
Wang
,
Y.
,
2018
, “
Effect of Pipe Surface Wettability on Flow Slip Property
,”
Ind. Eng. Chem. Res.
,
57
(
37
), pp.
12543
12550
. 10.1021/acs.iecr.8b02759
7.
Chun
,
M.-S.
, and
Lee
,
S.
,
2005
, “
Flow Imaging of Dilute Colloidal Suspension in PDMS-Based Microfluidic Chip Using Fluorescence Microscopy
,”
Colloids Surf. A
,
267
(
1–3
), pp.
86
94
. 10.1016/j.colsurfa.2005.06.046
8.
Byun
,
D.
,
Kim
,
J.
,
Ko
,
H. S.
, and
Park
,
H. C.
,
2008
, “
Direct Measurement of Slip Flows in Superhydrophobic Microchannels With Transverse Grooves
,”
Phys. Fluids
,
20
(
11
), p.
113601
. 10.1063/1.3026609
9.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2004
, “
A Generating Mechanism for Apparent Fluid Slip in Hydrophobic Microchannels
,”
Phys. Fluids
,
16
(
5
), pp.
1509
1515
. 10.1063/1.1669400
10.
Rosengarten
,
G.
,
Cooper-White
,
J.
, and
Metcalfe
,
G.
,
2006
, “
Experimental and Analytical Study of the Effect of Contact Angle on Liquid Convective Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
4161
4170
. 10.1016/j.ijheatmasstransfer.2006.02.057
11.
Ngoma
,
G. D.
, and
Erchiqui
,
F.
,
2007
, “
Heat Flux and Slip Effects on Liquid Flow in a Microchannel
,”
Int. J. Therm. Sci.
,
46
(
11
), pp.
1076
1083
. 10.1016/j.ijthermalsci.2007.02.001
12.
Morini
,
G. L.
,
2005
, “
Viscous Heating in Liquid Flows in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3637
3647
. 10.1016/j.ijheatmasstransfer.2005.01.011
13.
Shojaeian
,
M.
, and
Shojaee
,
M. N.
,
2013
, “
Viscous Dissipation Effect on Heat Transfer Characteristics of Mixed Electromagnetic/Pressure Driven Liquid Flows Inside Micropumps
,”
Korean J. Chem. Eng.
,
30
(
4
), pp.
823
830
. 10.1007/s11814-012-0233-9
14.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2014
, “
Convective Heat Transfer and Entropy Generation Analysis on Newtonian and Non-Newtonian Fluid Flows Between Parallel-Plates Under Slip Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
70
, pp.
664
673
. 10.1016/j.ijheatmasstransfer.2013.11.020
15.
Shojaeian
,
M.
,
Nedaei
,
M.
,
Yildiz
,
M.
, and
Koşar
,
A.
,
2017
, “
Numerical Heat Transfer and Entropy Analysis on Liquid Slip Flows Through Parallel-Plate Microchannels
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021003
. 10.1115/1.4037199
16.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
. 10.1115/1.4024354
17.
Zhang
,
T.
,
Jia
,
L.
,
Yang
,
L.
, and
Jaluria
,
Y.
,
2010
, “
Effect of Viscous Heating on Heat Transfer Performance in Microchannel Slip Flow Region
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4927
4934
. 10.1016/j.ijheatmasstransfer.2010.05.055
18.
Nikkhah
,
Z.
,
Karimipour
,
A.
,
Safaei
,
M. R.
,
Forghani-Tehrani
,
P.
,
Goodarzi
,
M.
,
Dahari
,
M.
, and
Wongwises
,
S.
,
2015
, “
Forced Convective Heat Transfer of Water/Functionalized Multi-Walled Carbon Nanotube Nanofluids in a Microchannel With Oscillating Heat Flux and Slip Boundary Condition
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
69
77
. 10.1016/j.icheatmasstransfer.2015.08.008
19.
Afrand
,
M.
,
Karimipour
,
A.
,
Ahmadi Nadooshan
,
A.
, and
Akbari
,
M.
,
2016
, “
The Variations of Heat Transfer and Slip Velocity of FMWNT-Water Nano-Fluid Along the Micro-Channel in the Lack and Presence of a Magnetic Field
,”
Physica E
,
84
, pp.
474
481
. 10.1016/j.physe.2016.07.013
20.
Karimipour
,
A.
,
Hossein Nezhad
,
A.
,
D’Orazio
,
A.
, and
Shirani
,
E.
,
2012
, “
Investigation of the Gravity Effects on the Mixed Convection Heat Transfer in a Microchannel Using Lattice Boltzmann Method
,”
Int. J. Therm. Sci.
,
54
, pp.
142
152
. 10.1016/j.ijthermalsci.2011.11.015
21.
Anand
,
V.
,
2014
, “
Slip Law Effects on Heat Transfer and Entropy Generation of Pressure Driven Flow of a Power Law Fluid in a Microchannel Under Uniform Heat Flux Boundary Condition
,”
Energy
,
76
, pp.
716
732
. 10.1016/j.energy.2014.08.070
22.
Sajadifar
,
S. A.
,
Karimipour
,
A.
, and
Toghraie
,
D.
,
2017
, “
Fluid Flow and Heat Transfer of Non-Newtonian Nanofluid in a Microtube Considering Slip Velocity and Temperature Jump Boundary Conditions
,”
Eur. J. Mech. B. Fluids
,
61
(
1
), pp.
25
32
. 10.1016/j.euromechflu.2016.09.014
23.
Ghosh
,
S.
,
2017
, “
Relative Effects of Asymmetry and Wall Slip on the Stability of Plane Channel Flow
,”
Fluids
,
2
(
4
), p.
66
. 10.3390/fluids2040066
24.
Jahanbakhshi
,
A.
,
Ahmadi Nadooshan
,
A.
, and
Bayareh
,
M.
,
2018
, “
Magnetic Field Effects on Natural Convection Flow of a Non-Newtonian Fluid in an L-Shaped Enclosure
,”
J. Therm. Anal. Calorim.
,
133
(
3
), pp.
1407
1416
. 10.1007/s10973-018-7219-6
25.
Wang
,
C. Y.
,
2012
, “
Brief Review of Exact Solutions for Slip-Flow in Ducts and Channels
,”
ASME J. Fluid. Eng.
,
134
(
9
), p.
094501
. 10.1115/1.4007232
26.
Shirazi
,
M.
,
Shateri
,
A.
, and
Bayareh
,
M.
,
2018
, “
Numerical Investigation of Mixed Convection Heat Transfer of a Nanofluid in a Circular Enclosure With a Rotating Inner Cylinder
,”
J. Therm. Anal. Calorim.
,
133
(
2
), pp.
1061
1073
. 10.1007/s10973-018-7186-y
27.
Bayareh
,
M.
,
Hajatzadeh Pordanjani
,
A.
,
Ahmadi Nadooshan
,
A.
, and
Shiryan Dehkordi
,
K.
,
2016
, “
Numerical Study of the Effects of Stator Boundary Conditions and Blade Geometry on the Efficiency of a Scraped Surface Heat Exchanger
,”
Appl. Therm. Eng.
,
113
, pp.
1426
1436
. 10.1016/j.applthermaleng.2016.11.166
28.
Goodarzi
,
Z.
,
Ahmadi Nadooshan
,
A.
, and
Bayareh
,
M.
,
2018
, “
Numerical Investigation of Off-Centre Binary Collision of Droplets in a Horizontal Channel
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
3
), pp.
1
10
. 10.1007/s40430-018-1075-y
29.
Duan
,
Z.
,
Ma
,
H.
,
He
,
B.
,
Su
,
L.
, and
Zhang
,
X.
,
2019
, “
Pressure Drop of Microchannel Plate Fin Heat Sinks
,”
Micromechines
,
10
(
2
), p.
80
. 10.3390/mi10020080
You do not currently have access to this content.