Abstract

Empirical/semi-empirical correlations are available in the literature to quantify the effect of several major parameters, like bulk pressure, non-condensable gas mass fraction, and wall subcooling, on condensation heat transfer coefficient (HTC). However, despite numerous applications of condensation on inclined flat plates, there is a lack of understanding of the effect of surface inclination on condensation heat transfer. Accordingly, a dedicated experimental program was undertaken to investigate the effect of surface inclination angle on filmwise steam condensation. Experiments were performed at different bulk pressures (1.7–4.2 bar absolute) and steam-air mass fractions (ranging from pure steam, i.e., 0% to 40% w/w air), with the steam-air mixture flowing over a flat test plate (Re range, 4200–4800). In each run, the inclination angle of the test surface was varied from −90 deg (condensation underneath the horizontal surface, facing downward) to +90 deg (condensation over the horizontal surface, facing upward) in increments of 15–20 deg (inclination angle θ measured from vertical). The results reveal an intriguing trend: for pure steam condensation, the HTCs decrease as the plate is inclined in either direction from the vertical, and the variation is nearly symmetric for both upward- and downward-facing configurations. On the other hand, for steam condensation in the presence of air, the HTCs decrease monotonically for upward-facing configurations, while they increase slightly (10–20%), and decrease subsequently (for θ < −70 deg) for downward-facing cases. Finally, the HTCs for inclined orientations are compared with the HTC in the standard vertical configuration to quantify the effect of inclination angle.

References

1.
Rose
,
J.
,
1969
, “
Condensation of a Vapour in the Presence of a Non-Condensing Gas
,”
Int. J. Heat Mass Transfer
,
12
(
2
), pp.
233
237
. 10.1016/0017-9310(69)90065-9
2.
Punetha
,
M.
, and
Khandekar
,
S.
,
2017
, “
A CFD Based Modelling Approach for Predicting Steam Condensation in the Presence of Non-Condensable Gases
,”
Nucl. Eng. Des.
,
324
, pp.
280
296
. 10.1016/j.nucengdes.2017.09.007
3.
Sparrow
,
E. M.
, and
Lin
,
S.
,
1964
, “
Condensation Heat Transfer in the Presence of a Noncondensable Gas
,”
ASME J. Heat Transfer
,
86
(
3
), pp.
430
436
. 10.1115/1.3688714
4.
Stephan
,
K.
,
1992
,
Heat Transfer in Condensation and Boiling
,
Springer
,
Berlin
, p.
324
.
5.
Carey
,
V. P.
,
2018
,
Liquid Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, pp.
1
766
.
6.
Ganguli
,
A.
,
Patel
,
A.
,
Maheshwari
,
N.
, and
Pandit
,
A.
,
2008
, “
Theoretical Modeling of Condensation of Steam Outside Different Vertical Geometries (Tube, Flat Plates) in the Presence of Noncondensable Gases Like Air and Helium
,”
Nucl. Eng. Des.
,
238
(
9
), pp.
2328
2340
. 10.1016/j.nucengdes.2008.02.016
7.
Punetha
,
M.
,
Choudhary
,
A.
, and
Khandekar
,
S.
,
2018
, “
Stratification and Mixing Dynamics of Helium in an Air Filled Confined Enclosure
,”
Int. J. Hydrogen Energy
,
43
(
42
), pp.
19792
19809
. 10.1016/j.ijhydene.2018.08.168
8.
Kulkarni
,
S.
,
Punetha
,
M.
,
Choudhary
,
A.
, and
Khandekar
,
S.
,
2018
, “
Effect of Stratification and Natural Circulation on Steam Condensation in Presence of non-Condensable Gases
,”
Fifth International Conference on Computational Methods for Thermal Problems
,
Indian Institute of Science, Bangalore
, THERMACOMP2018, p.
4
.
9.
Herranz
,
L. E.
,
Anderson
,
M. H.
, and
Corradini
,
M. L.
,
1998
, “
A Diffusion Layer Model for Steam Condensation Within the AP600 Containment
,”
Nucl. Eng. Des.
,
183
(
1–2
), pp.
133
150
. 10.1016/S0029-5493(98)00164-2
10.
Uchida
,
H.
,
Oyama
,
A.
, and
Togo
,
Y.
,
1964
,
Evaluation of Post-Incident Cooling Systems of Light Water Power Reactors
,
Tokyo University
.
11.
Dehbi
,
A. A.
,
1991
, “
The Effects of Noncondensable Gases on Steam Condensation Under Turbulent Natural Convection Conditions
,”
Ph. D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
, p.
153
.
12.
Yadav
,
M. K.
,
Khandekar
,
S.
, and
Sharma
,
P. K.
,
2016
, “
An Integrated Approach to Steam Condensation Studies Inside Reactor Containments: A Review
,”
Nucl. Eng. Des.
,
300
, pp.
181
209
. 10.1016/j.nucengdes.2016.01.004
13.
Punetha
,
M.
,
Yadav
,
M.
,
Khandekar
,
S.
,
Sharma
,
P. K.
, and
Ganju
,
S.
,
2019
, “
Intrinsic Transport and Combustion Issues of Steam-Air-Hydrogen Mixtures in Nuclear Containments
,”
Int. J. Hydrogen Energy
,
45
(
4
), pp.
3340
3371
. 10.1016/j.ijhydene.2019.11.179
14.
Briggs
,
A.
, and
Rose
,
J. W.
,
2009
, “
Condensation on Integral-fin Tubes With Special Reference to Effects of Vapor Velocity
,”
Heat Transfer Res.
,
40
(
1
), pp.
57
78
. 10.1615/HeatTransRes.v40.i1.40
15.
Gerstmann
,
J.
, and
Griffith
,
P.
,
1967
, “
Laminar Film Condensation on the Underside of Horizontal and Inclined Surfaces
,”
Int. J. Heat Mass Transfer
,
10
(
5
), pp.
567
580
. 10.1016/0017-9310(67)90105-6
16.
Peterson
,
P.
,
Schrock
,
V.
, and
Kageyama
,
T.
,
1993
, “
Diffusion Layer Theory for Turbulent Vapor Condensation With Noncondensable Gases
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
998
1003
. 10.1115/1.2911397
17.
Ali
,
H.
,
Wang
,
H. S.
,
Briggs
,
A.
, and
Rose
,
J. W.
,
2013
, “
Effects of Vapor Velocity and Pressure on Marangoni Condensation of Steam-Ethanol Mixtures on a Horizontal Tube
,”
ASME J. Heat Transfer
,
135
(
3
), p.
10
. 10.1115/1.4007893
18.
De la Rosa
,
J.
,
Escriva
,
A.
,
Herranz
,
L.
,
Cicero
,
T.
, and
Munoz-Cobo
,
J.
,
2009
, “
Review on Condensation on the Containment Structures
,”
Prog. Nucl. Energy
,
51
(
1
), pp.
32
66
. 10.1016/j.pnucene.2008.01.003
19.
Kakodkar
,
A.
,
2014
, “
Evolution of Nuclear Reactor Containments in India: Addressing the Present Day Challenges
,”
Nucl. Eng. Des.
,
269
, pp.
3
22
. 10.1016/j.nucengdes.2013.08.048
20.
Van Der Geld
,
C.
,
Ganzevles
,
F.
,
Simons
,
C.
, and
Weitz
,
F.
,
2001
, “
Geometry Adaptations to Improve the Performance of Compact, Polymer Condensers
,”
Chem. Eng. Res. Des.
,
79
(
4
), pp.
357
362
. 10.1205/026387601750282463
21.
Bhardwaj
,
R.
,
Ten Kortenaar
,
M.
, and
Mudde
,
R.
,
2013
, “
Influence of Condensation Surface on Solar Distillation
,”
Desalination
,
326
, pp.
37
45
. 10.1016/j.desal.2013.07.006
22.
Jaber
,
M. H.
, and
Webb
,
R. L.
,
1996
, “
Steam Condensation on Horizontal Integral-fin Tubes of Low Thermal Conductivity
,”
J. Enhanced Heat Transfer
,
3
(
1
), pp.
55
71
. 10.1615/JEnhHeatTransf.v3.i1.50
23.
Gogonin
,
I.
,
2007
, “
Summary of the Experimental Data on Heat Transfer in Condensation of Moving Vapor Inside Vertical Tubes
,”
Heat Transfer Res.
,
38
(
5
), pp.
431
448
. 10.1615/HeatTransRes.v38.i5.50
24.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
,
1959
, “
Laminar Condensation Heat Transfer on a Horizontal Cylinder
,”
ASME J. Heat Transfer
,
81
(
4
), pp.
291
295
. 10.1115/1.4008210
25.
Dobson
,
M.
, and
Chato
,
J.
,
1998
, “
Condensation in Smooth Horizontal Tubes
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
193
213
. 10.1115/1.2830043
26.
Huhtiniemi
,
I. K.
, and
Corradini
,
M. L.
,
1993
, “
Condensation in the Presence of Noncondensable Gases
,”
Nucl. Eng. Des.
,
141
(
3
), pp.
429
446
. 10.1016/0029-5493(93)90130-2
27.
Chung
,
B.-J.
,
Kim
,
S.
, and
Kim
,
M. C.
,
2005
, “
Film Condensations of Flowing Mixtures of Steam and Air on an Inclined Flat Plate
,”
Int. Commun. Heat Mass Transfer
,
32
(
1–2
), pp.
233
239
. 10.1016/j.icheatmasstransfer.2004.04.034
28.
Chung
,
B.-J.
,
Kim
,
M. C.
, and
Ahmadinejad
,
M.
,
2008
, “
Film-wise and Drop-Wise Condensation of Steam on Short Inclined Plates
,”
J. Mech. Sci. Technol.
,
22
(
1
), pp.
127
133
. 10.1007/s12206-007-1015-8
29.
Czubinski
,
F. F.
,
Mantelli
,
M. B.
, and
Passos
,
J. C.
,
2013
, “
Condensation on Downward-Facing Surfaces Subjected to Upstream Flow of Air–Vapor Mixture
,”
Exp. Therm. Fluid. Sci.
,
47
, pp.
90
97
. 10.1016/j.expthermflusci.2013.01.004
30.
Yadav
,
M. K.
,
2018
, “
Steam Condensation Studies Towards Understanding Post-Severe Nuclear Accident Scenarios
,”
Ph. D. thesis
,
Indian Institute of Technology Kanpur
, p.
236
.
31.
Singh
,
S. K.
,
Yadav
,
M. K.
, and
Khandekar
,
S.
,
2017
, “
Measurement Issues Associated With Surface Mounting of Thermopile Heat Flux Sensors
,”
Appl. Therm. Eng.
,
114
, pp.
1105
1113
. 10.1016/j.applthermaleng.2016.12.076
32.
Wilke
,
C. R.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
. 10.1063/1.1747673
33.
Park
,
S.
,
Kim
,
M.
, and
Yoo
,
K.
,
1996
, “
Condensation of Pure Steam and Steam-Air Mixture With Surface Waves of Condensate Film on a Vertical Wall
,”
Int. J. Multiphase Flow
,
22
(
5
), pp.
893
908
. 10.1016/0301-9322(96)00020-1
34.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation, Clarendon Press
,
Oxford University Press
,
Oxford
, p.
640
.
35.
Labuntzov
,
D.
,
1957
, “
Heat Transfer at Film Condensation of Pure Vapors on Vertical Surface and Horizontal Pipes
,”
Teploenergetika
,
7
, pp.
72
80
.
36.
Cengel
,
Y. A.
,
1998
,
Boiling and Condensation, Heat Transfer: A Practical Approach
,
McGraw-Hill
,
New York
, Vol.
141
, pp.
515
560
.
37.
Nimmo
,
B. G.
, and
Leppert
,
G.
,
1970
, “Laminar Film Condensation on a Finite Horizontal Surface,”
International Heat Transfer Conference 4
,
Begel House Inc.
,
Paris-Versailles, France
, pp.
1
11
.
38.
Minkowycz
,
W.
, and
Sparrow
,
E.
,
1966
, “
Condensation Heat Transfer in the Presence of Noncondensables, Interfacial Resistance, Superheating, Variable Properties, and Diffusion
,”
Int. J. Heat Mass Transfer
,
9
(
10
), pp.
1125
1144
. 10.1016/0017-9310(66)90035-4
39.
Asano
,
K.
,
Nakano
,
Y.
, and
Inaba
,
M.
,
1979
, “
Forced Convection Film Condensation of Vapors in the Presence of Noncondensable Gas on a Small Vertical Flat Plate
,”
J. Chem. Eng. Jpn.
,
12
(
3
), pp.
196
202
. 10.1252/jcej.12.196
40.
Lee
,
K.-Y.
, and
Kim
,
M. H.
,
2011
,
Evaporation, Condensation and Heat Transfer
,
A.
Ahsan
, ed.,
IntechOpen
,
Rijeka, Croatia
, pp.
154
168
.
41.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
42.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
ASME Mech. Eng.
,
75
, p.
5
.
43.
Sweet
,
J.
,
Roth
,
E.
, and
Moss
,
M.
,
1987
, “
Thermal Conductivity of Inconel 718 and 304 Stainless Steel
,”
Int. J. Thermophys.
,
8
(
5
), pp.
593
606
. 10.1007/BF00503645
You do not currently have access to this content.