Abstract

Gold nanoparticles (AuNPs) are increasingly being widely used in several biomedical applications for their compatibility of synthesis and less toxicity. The mixture of gold and titanium oxide nanoparticles is suspended in water to make a new class of nanofluid, which is called a hybrid nanofluid. The problem of direct current (DC)/alternating current (AC) magnetohydrodynamic (MHD) micropump of the hybrid nanofluid through a porous medium in the gap between vertical coaxial microtubes with heat transfer has been discussed. The mathematical model is established and then solved with the help of the Laplace transform. The inversion of the transformed functions is calculated numerically. The velocity, the flowrate, the pressure, and the heat transfer are discussed graphically. The higher concentration of the mixture of particles enhances the stream so that the required pressure is small. Moreover, it is found that the variation of the Nusselt number is noticeable by increasing the concentrations of nanoparticles, but this variation vanishes near the outer tube.

References

1.
Wang
,
N.
, and
Fu
,
M.
,
2018
, “
Micropumps and Biomedical Applications—A Review
,”
Microelectron. Eng.
,
195
(
5
), pp.
121
138
. 10.1016/j.mee.2018.04.008
2.
Nisar
,
A.
,
Afzulpurkar
,
N.
,
Mahaisavariya
,
B.
, and
Tuantranont
,
A.
,
2008
, “
MEMS-Based Micropumps in Drug Delivery and Biomedical Applications
,”
Sens. Actuators B
,
130
(
2
), pp.
917
942
. 10.1016/j.snb.2007.10.064
3.
Amirouche
,
F.
,
Zhou
,
Y.
, and
Johnson
,
T.
,
2009
, “
Current Micropump Technologies and Their Biomedical Applications
,”
Microsyst. Technol.
,
15
(
5
), pp.
647
666
. 10.1007/s00542-009-0804-7
4.
Herrlich
,
S.
,
Spieth
,
S.
,
Messner
,
S.
, and
Zengerle
,
R.
,
2012
, “
Osmotic Micropumps for Drug Delivery
,”
Adv. Drug Deliv. Rev.
,
64
(
14
), pp.
1617
1627
. 10.1016/j.addr.2012.02.003
5.
Lemoff
,
A.
, and
Lee
,
A.
,
2003
, “
An AC Magnetohydrodynamic Microfluidic Switch for Micro Total Analysis Systems
,”
Biomed. Microdev.
,
5
(
1
), pp.
55
60
. 10.1023/A:1024415400633
6.
Duwairi
,
H. M.
, and
Abdullah
,
M.
,
2007
, “
Thermal and Flow Analysis of Magnetohydrodynamic Micropump
,”
Microsyst. Technol.
,
13
(
1
), pp.
33
39
. 10.1007/s00542-006-0258-0
7.
Kiyasatfar
,
M.
,
Pourmahmoud
,
N.
,
Golzan
,
M. M.
, and
Mirzaee
,
I.
,
2012
, “
Thermal Behavior and Entropy Generation Rate Analysis of a Viscous Flow in MHD Micropumps
,”
ASME J. Mech. Sci. Technol.
,
26
(
6
), pp.
1949
1955
. 10.1007/s12206-012-0401-z
8.
Kim
,
C. T.
,
Lee
,
J.
, and
Kwon
,
S.
,
2014
, “
Design, Fabrication, and Testing of a DC MHD Micropump Fabricated on Photosensitive Glass
,”
Chem. Eng. Sci.
,
117
(
9
), pp.
210
216
. 10.1016/j.ces.2014.06.035
9.
Guangpu
,
Z.
,
Yongjun
,
J.
,
Long
,
C.
, and
Mandula
,
B.
,
2015
, “
Magnetohydrodynamic Flow of Generalized Maxwell Fluids in a Rectangular Micropump Under an AC Electric Field
,”
ASME J. Magn. Magn. Mater.
,
387
(
8
), pp.
111
117
. 10.1016/j.jmmm.2015.03.094
10.
Chonghua
,
G.
, and
Yongjun
,
J.
,
2015
, “
Analytical Solution of Magnetohydrodynamic Flow of a Jeffrey Fluid Through a Circular Microchannel
,”
ASME J. Mol. Liq.
,
211
(
11
), pp.
803
811
. 10.1016/j.molliq.2015.08.004
11.
Elmaboud
,
Y. A.
, and
Abdelsalam
,
S. I.
,
2019
, “
DC/AC MHD Micropump of a Generalized Burgers’ Fluid in an Annulus
,”
Phys. Scr.
,
94
(
11
), p.
115209
. 10.1088/1402-4896/ab206d
12.
Selimefendigil
,
F.
, and
Öztop
,
H.
,
2019
, “
MHD Pulsating Forced Convection of Nanofluid Over Parallel Plates With Blocks in a Channel
,”
Int. J. Mech. Sci.
,
157
(
7
), pp.
726
740
. 10.1016/j.ijmecsci.2019.04.048
13.
Selimefendigil
,
F.
, and
Öztop
,
H.
,
2019
, “
Conjugate Mixed Convection of Nanofluid in a Cubic Enclosure Separated With a Conductive Plate and Having an Inner Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
139
(
8
), pp.
1000
1017
. 10.1016/j.ijheatmasstransfer.2019.05.053
14.
Benkhedda
,
M.
,
Boufendi
,
T.
, and
Touahri
,
S.
,
2018
, “
Laminar Mixed Convective Heat Transfer Enhancement by Using Ag-TiO2-Water Hybrid Nanofluid in a Heated Horizontal Annulus
,”
Heat Mass Transfer
,
54
(
3
), pp.
2799
2814
. 10.1007/s00231-018-2302-x
15.
Turcu
,
R.
,
Darabont
,
A.
,
Nan
,
A.
,
Aldea
,
N.
,
Macovei
,
D.
,
Bica
,
D.
,
Vekas
,
L.
,
Pana
,
O.
,
Soran
,
M. L.
,
Koos
,
A. A.
, and
Biro
,
L. P.
,
2006
, “
New Polypyrrole Multiwall Carbon Nanotubes Hybrid Materials
,”
ASME J. Optoelectron. Adv. Mater.
,
8
(
2
), pp.
643
647
.
16.
Jana
,
S.
,
Salehi-Khojin
,
A.
, and
Zhong
,
W. H.
,
2007
, “
Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-Additives
,”
Thermochim. Acta
,
462
(
1–2
), pp.
45
55
. 10.1016/j.tca.2007.06.009
17.
Li
,
H.
,
Ha
,
C. S.
, and
Kim
,
I.
,
2009
, “
Fabrication of Carbon Nanotube/SiO2 and Carbon Nanotube/SiO2/Ag Nanoparticles Hybrids by Using Plasma Treatment
,”
Nanoscale Res. Lett.
,
4
(
11
), pp.
1384
1392
. 10.1007/s11671-009-9409-4
18.
Zainal
,
S.
,
Tan
,
C.
,
Sian
,
C.
, and
Siang
,
T.
,
2016
, “
ANSYS Simulation for Ag/HEG Hybrid Nanofluid in Turbulent Circular Pipe
,”
ASME J. Adv. Res. Appl. Mech.
,
23
(
1
), pp.
20
35
.
19.
Vafaei
,
M.
,
Afrand
,
M.
,
Sina
,
N.
,
Kalbasi
,
R.
,
Sourani
,
F.
, and
Teimouri
,
H.
,
2017
, “
Evaluation of Thermal Conductivity of MgO-MWCNTs/EG Hybrid Nanofluids Based on Experimental Data by Selecting Optimal Artificial Neural Networks
,”
Phys. E: Low-Dimensional Syst. Nanostruct.
,
85
(
1
), pp.
90
96
. 10.1016/j.physe.2016.08.020
20.
Yousefi
,
M.
,
Dinarvand
,
S.
,
Yazdi
,
M. E.
, and
Pop
,
I.
,
2018
, “
Stagnation Point Flow of an Aqueous Titania-Copper Hybrid Nanofluid Toward a Wavy Cylinder
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
7
), pp.
1716
1735
. 10.1108/HFF-01-2018-0009
21.
Waini
,
I.
,
Ishak
,
A.
, and
Pop
,
I.
,
2019
, “
Unsteady Flow and Heat Transfer Past a Stretching/Shrinking Sheet in a Hybrid Nanofluid
,”
Int. J. Heat Mass Transfer
,
136
(
6
), pp.
288
297
. 10.1016/j.ijheatmasstransfer.2019.02.101
22.
Ma
,
Y.
,
Mohebbi
,
R.
,
Rashidi
,
M. M.
, and
Yang
,
Z.
,
2019
, “
MHD Convective Heat Transfer of Ag-MgO/Water Hybrid Nanofluid in a Channel With Active Heaters and Coolers
,”
Int. J. Heat Mass Transfer
,
137
(
7
), pp.
714
726
. 10.1016/j.ijheatmasstransfer.2019.03.169
23.
Sahoo
,
R. R.
,
Ghosh
,
P.
, and
Sarkar
,
J.
,
2017
, “
Performance Analysis of a Louvered Fin Automotive Radiator Using Hybrid Nanofluid as Coolant
,”
Heat Transfer—Asian Res.
,
46
(
7
), pp.
978
995
. 10.1002/htj.21254
24.
Takabi
,
T.
, and
Salehi
,
S.
,
2014
, “
Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid Nanofluid
,”
Adv. Mech. Eng.
,
6
, p.
147059
. 10.1155/2014/147059
25.
Hayat
,
T.
,
Nadeem
,
S.
, and
Khan
,
A. U.
,
2018
, “
Rotating Flow of AgCuO/H2O Hybrid Nanofluid With Radiation and Partial Slip Boundary Effects
,”
Eur. Phys. J. E
,
41
(
6
), pp.
75
84
. 10.1140/epje/i2018-11682-y
26.
Hassan
,
M.
,
Marin
,
M.
,
Ellahi
,
R.
, and
Alamri
,
S. Z.
,
2018
, “
Exploration of Convective Heat Transfer and Flow Characteristics Synthesis by Cu-Ag/Water Hybrid-Nanofluids
,”
Heat Transfer Res.
,
49
(
18
), pp.
1837
1848
. 10.1615/HeatTransRes.2018025569
27.
Abd Elmaboud
,
Y.
,
Mekheimer
,
K. S.
, and
Emam
,
T. G.
,
2019
, “
Numerical Examination of Gold Nanoparticles as a Drug Carrier on Peristaltic Blood Flow Through Physiological Vessels: Cancer Therapy Treatment
,”
BioNanoScience
,
9
, pp.
952
965
. 10.1007/s12668-019-00639-7
28.
Honig
,
G.
, and
Hirdes
,
U.
,
1984
, “
A Method for Numerical Inversion of Laplace Transform
,”
ASME J. Comput. Appl. Math.
,
10
, pp.
113
132
. 10.1016/0377-0427(84)90075-X
You do not currently have access to this content.