Abstract

When the femtosecond laser pulse is comparable to the electron relaxation time, the hyperbolic effect cannot be neglected in heat transfer analysis. The non-Fourier effect is considered for heat transfer analysis assuming finite delay in the development of temperature within the body. This delay is represented in terms of two relaxation times connected to heat flux and temperature gradient. In the present work, a 3D finite element-based heat transfer model is developed using a dual-phase-lag effect. Since the experimental basis of transient temperature distribution in ultrashort pulse laser is extremely difficult or nearly impossible, the model results have been validated with the literature reported results. Furthermore, the simulation of dissimilar fusion welding system treated by an ultrashort pulse laser is demonstrated. The typical characteristic of thermal behavior with the application of femtosecond fiber laser on welding of dissimilar aluminum alloy and stainless steel is presented. The model results in the form of computed isotherm are compared with the literature reported weld pool geometry for dissimilar materials. The feasibility of characteristic parameters like pulse frequency, pulse width, and relaxation times are assessed in this study. A clear guideline of the geometric shape and size of weld pool geometry and the peak temperature of the welding system corresponding to predictable laser parameters is the effective output from this study. Peak temperature reached in a very short interval of time (∼ nanosecond) is analogous to a high rate of heating or cooling that affects the microstructural changes, specifically the formation of intermetallic for dissimilar welding.

References

1.
Shirk
,
M. D.
, and
Molian
,
P. A.
,
1998
, “
Review of Ultrashort Pulsed Laser Ablation of Materials
,”
J. Laser Appl.
,
10
(
1
), pp.
18
28
. 10.2351/1.521827
2.
Schmidt
,
V.
,
Husinsky
,
W.
, and
Betz
,
G.
,
2000
, “
Dynamics of Laser Deposition and Ablation of Metals at the Threshold on the Femtosecond Time Scale
,”
Phys. Rev. Lett.
,
85
(
16
), pp.
3516
3519
. 10.1103/PhysRevLett.85.3516
3.
Chen
,
J. K.
, and
Beraun
,
J. E.
,
2003
, “
Modelling of Ultrashort Laser Ablation of Gold Films in Vacuum
,”
J. Opt. A: Pure Appl. Opt.
,
5
(
3
), pp.
168
173
. 10.1088/1464-4258/5/3/304
4.
Gamaly
,
E.
,
2011
,
Femtosecond Laser-Mater Interactions: Theory, Experiments and Applications
,
Pan Stanford Publishing
,
Singapore
.
5.
Eesley
,
G. L.
,
1983
, “
Observation of Non-Equilibrium Electron Heating in Copper
,”
Phys. Rev. Lett.
,
51
(
23
), pp.
2140
2143
. 10.1103/PhysRevLett.51.2140
6.
Tzou
,
D. Y.
,
2015
,
Macro-to Microscale Heat Transfer: The Lagging Behaviour
,
Wiley
,
UK
.
7.
Nolte
,
S.
,
Will
,
M.
,
Burghoff
,
J.
, and
Tünnermann
,
A.
,
2004
, “
Ultrafast Laser Processing: New Options for Three-Dimensional Photonic Structures
,”
J. Mod. Opt.
,
51
(
16–18
), pp.
2533
2542
. 10.1080/09500340408231812
8.
Richter
,
S.
,
Nolte
,
S.
, and
Tünnermann
,
A.
,
2012
, “
Ultrashort Pulse Laser Welding—A New Approach for High Stability Bonding of Different Glasses
,”
Phys. Procedia
,
39
, pp.
556
562
. 10.1016/j.phpro.2012.10.073
9.
Cattaneo
,
C.
,
1958
, “
Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
Compute Rendus
,
247
, pp.
431
433
.
10.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de la Theorie Continue de L’Equation de la Chaleur
,”
Compute Rendus
,
246
, pp.
3154
3155
.
11.
Fujimoto
,
J. G.
,
Liu
,
J. M.
,
Ippen
,
E. P.
, and
Bloembergen
,
N.
,
1984
, “
Femtosecond Laser Interaction With Metallic Tungsten and Non-Equilibrium Electron and Lattice Temperatures
,”
Phys. Rev. Lett.
,
53
(
19
), pp.
1837
1840
. 10.1103/PhysRevLett.53.1837
12.
Anisimov
,
S. I.
,
Kapelovich
,
B. L.
, and
Perel’man
,
T. L.
,
1974
, “
Electron Emission From Metal Surfaces Exposed to Ultra-Short Laser Pulses
,”
Sov. Phys.
,
39
(
2
), pp.
375
377
.
13.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
Heat Transfer J.
,
115
(
4
), pp.
835
841
. 10.1115/1.2911377
14.
Qiu
,
T. Q.
,
Juhasz
,
T.
,
Suarez
,
C.
,
Bron
,
W. E.
, and
Tien
,
C. L.
,
1994
, “
Femtosecond Laser Heating of Multi-Layer Metals-II. Experiments
,”
J. Heat Mass Transfer
,
37
(
17
), pp.
2799
2808
. 10.1016/0017-9310(94)90397-2
15.
Chen
,
J. K.
,
Latham
,
W. P.
, and
Beraun
,
J. E.
,
2002
, “
Axisymmetric Modeling of Femtosecond-Pulse Laser Heating on Metal Films
,”
Numer. Heat Transfer Part B
,
42
(
1
), pp.
1
17
. 10.1080/10407790190053806
16.
Chen
,
J. K.
,
Tzou
,
D. Y.
, and
Beraun
,
J. E.
,
2006
, “
A Semiclassical Two-Temperature Model for Ultrafast Laser Heating
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
307
316
. 10.1016/j.ijheatmasstransfer.2005.06.022
17.
Chen
,
J. K.
,
Ren
,
Y.
, and
Zhang
,
Y.
,
2012
, “
Modeling of Ultrafast Phase Changes in Metal Films Induced by an Ultrashort Laser Pulse Using a Semi-Classical Two-Temperature Model
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1620
1627
. 10.1016/j.ijheatmasstransfer.2011.11.018
18.
Mathieu
,
A.
,
Shabadi
,
R.
,
Deschamps
,
A.
,
Suery
,
M.
,
Matteï
,
S.
,
Grevey
,
D.
, and
Cical
,
E.
,
2007
, “
Dissimilar Material Joining Using Laser (Aluminum to Steel Using Zinc-Based Filler Wire)
,”
Opt. Laser Technol.
,
39
(
3
), pp.
652
661
. 10.1016/j.optlastec.2005.08.014
19.
Akhter
,
R.
,
Ivanchev
,
L.
, and
Burger
,
H.
,
2007
, “
Effect of Pre/Post T6 Heat Treatment on the Mechanical Properties of Laser Welded SSM Cast A356 Aluminium Alloy
,”
Mater. Sci. Eng. A
,
447
(
1–2
), pp.
192
196
. 10.1016/j.msea.2006.10.148
20.
Mai
,
T.
, and
Spowage
,
A.
,
2004
, “
Characterization of Dissimilar Joints in Laser Welding of Steel-Kovar, Copper-Steel and Copper-Aluminium
,”
Mater. Sci. Eng. A
,
374
(
1–2
), pp.
224
233
. 10.1016/j.msea.2004.02.025
21.
Chen
,
H. C.
,
Pinkerton
,
A. J.
, and
Li
,
L.
,
2011
, “
Fiber Laser Welding of Dissimilar Alloys of Ti-6Al-4V and Inconel 718 for Aerospace Applications
,”
Int. J. Adv. Manuf. Technol.
,
52
(
9–12
), pp.
977
987
. 10.1007/s00170-010-2791-3
22.
Borrisutthekul
,
R.
,
Yachi
,
T.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
,
2007
, “
Suppression of Intermetallic Reaction Layer Formation by Controlling Heat Flow in Dissimilar Joining of Steel and Aluminum Alloy
,”
Mater. Sci. Eng. A
,
467
(
1–2
), pp.
108
113
. 10.1016/j.msea.2007.03.049
23.
Baruah
,
M.
, and
Bag
,
S.
,
2016
, “
Influence of Heat Input in Microwelding of Titanium Alloy by Micro Plasma Arc
,”
J. Mater. Process. Technol.
,
231
(
5
), pp.
100
112
. 10.1016/j.jmatprotec.2015.12.014
24.
Yaduwanshi
,
D.
,
Bag
,
S.
, and
Pal
,
S.
,
2016
, “
Numerical Modeling and Experimental Investigation on Plasma Assisted Hybrid Friction Stir Welding for Dissimilar Materials
,”
Mater. Des.
,
92
(
2
), pp.
166
183
. 10.1016/j.matdes.2015.12.039
25.
Banerjee
,
A.
,
Ogale
,
A. A.
,
Das
,
C.
,
Mitra
,
K.
, and
Subramanian
,
C.
,
2005
, “
Temperature Distribution in Different Materials Due to Short Pulse Laser Irradiation
,”
Heat Transfer Eng.
,
26
(
8
), pp.
41
49
. 10.1080/01457630591003754
26.
Brorson
,
S. D.
,
Fujimoto
,
J. G.
, and
Ippen
,
E. P.
,
1987
, “
Femtosecond Electronic Heat-Transport Dynamics in Thin Gold Films
,”
Phys. Rev. Lett.
,
59
(
17
), pp.
1962
1965
. 10.1103/PhysRevLett.59.1962
27.
Horn
,
A.
,
Mingareev
,
I.
, and
Werth
,
A.
,
2008
, “
Investigation on Melting and Welding of Glass by Ultra-Short Laser Radiation
,”
J. Laser Micro/Nanoeng.
,
3
(
2
), pp.
114
118
. 10.2961/jlmn.2008.02.0010
28.
Tamaki
,
T.
,
Watanabe
,
W.
, and
Itoh
,
K.
,
2006
, “
Laser Micro-Welding of Transparent Materials by a Localized Heat Accumulation Effect Using a Femtosecond Fiber Laser at 1558 nm
,”
Opt. Express
,
14
(
22
), pp.
10460
10468
. 10.1364/OE.14.010460
29.
Luo
,
C.
, and
Lin
,
L.
,
2002
, “
The Application of Nanosecond-Pulsed Laser Welding Technology in MEMS Packaging With a Shadow Mask
,”
Sens. Actuators A
,
97–98
(
4
), pp.
398
404
. 10.1016/S0924-4247(01)00849-4
30.
Huang
,
H.
,
Yang
,
L. M.
,
Bai
,
S.
, and
Liu
,
J.
,
2014
, “
Femtosecond Fiber Laser Welding of Dissimilar Metals
,”
Appl. Opt.
,
53
(
28
), pp.
6569
6578
. 10.1364/AO.53.006569
31.
Kumar
,
S.
,
Bag
,
S.
, and
Baruah
,
M.
,
2016
, “
Finite Element Model for Femtosecond Laser Pulse Heating Using Dual Phase Lag Effect
,”
J. Laser Appl.
,
28
(
3
), p.
032008
. 10.2351/1.4948369
32.
Qiu
,
T. Q.
,
Juhasz
,
T.
,
Suarez
,
C.
,
Brons
,
W. E.
, and
Tien
,
C. L.
,
1994
, “
Femtosecond Laser Heating of Multi-Layer Metals-I. Analysis
,”
J. Heat Mass Transfer
,
37
(
17
), pp.
2789
2797
. 10.1016/0017-9310(94)90396-4
33.
Cheng
,
Y.
,
Jin
,
X.
,
Li
,
S.
, and
Zeng
,
L.
,
2012
, “
Fresnel Absorption and Inverse Bremsstrahlung Absorption in an Actual 3D Keyhole During Deep Penetration CO2 Laser Welding of Aluminum 6016
,”
Opt. Laser Technol.
,
44
(
5
), pp.
1426
1436
. 10.1016/j.optlastec.2011.12.024
34.
Yadaiah
,
N.
, and
Bag
,
S.
,
2012
, “
Effect of Heat Source Parameters in Thermal and Mechanical Analysis of Linear GTA Welding Process
,”
ISIJ Int.
,
52
(
11
), pp.
2069
2075
. 10.2355/isijinternational.52.2069
35.
Furusawa
,
K.
,
Takahashi
,
K.
,
Kumagai
,
H.
,
Midorikawa
,
K.
, and
Obara
,
M.
,
1999
, “
Ablation Characteristics of Au, Ag, And Cu Metals Using a Femtosecond Ti: Sapphire Laser
,”
Appl. Phys. A
,
69
(
7
), pp.
S359
S366
. 10.1007/s003390051417
36.
Newmark
,
N. M.
,
1962
, “
A Method of Computation for Structural Dynamics
,”
Trans. Am. Soc. Civ. Eng.
,
127
(
1
), pp.
1406
1432
.
37.
Nishida
,
A.
,
2019
, “
The Scalable Software Infrastructure Project
,” http://www.ssisc.org/lis/, Accessed September 4, 2019.
38.
Kim
,
D. G.
,
Yoon
,
J. W.
,
Lee
,
C. Y.
, and
Jung
,
S. B.
,
2003
, “
Reaction Diffusion and Formation of Cu11In9 and In27Ni10 Phases in the Couple of Indium-Substrates
,”
Mater. Trans.
,
44
(
1
), pp.
72
77
. 10.2320/matertrans.44.72
You do not currently have access to this content.