Abstract

Utilizing the heat from air source with heat pump system in electric vehicles shows a significant advantage from thermoelectric heat source for heat supply in cold climate. It could improve the driving range of electric vehicles considerably in winter and replace the positive temperature coefficient (PTC) heater with an acceptable cost and reliability. In this work, a newly designed heat pump system was first introduced with less components and cost. Second, experiments were conducted to investigate its cooling performance, and subsequent heating performance from −10 to 10 °C. The typical heat transfer and flow characteristics of refrigerant were recorded, and the behavior of each component including compressor, evaporator, condenser, and outside heat exchanger were analyzed and interpreted. The results showed that the heating and cooling performance of the new heat pump system could almost remain the same with traditional air-conditioning system in automobile and surely satisfy with the heat requirement of electric vehicles. In the heating mode, the maximum heating capacity increases by 13% at 400 m3/h air volume from 300 m3/h at the ambient temperature −10 °C, while the outlet air temperature decreases by 4–6%. In addition, using a heat pump system showed an increase in the driving range of electric vehicles by 25–31% as compared to PTC heaters.

References

References
1.
Keiner
,
D.
,
Ram
,
M.
,
Barbosa
,
L.
,
Bogdanov
,
D.
, and
Breyer
,
C.
,
2019
, “
Cost Optimal Self Consumption of PV Prosumers with Stationary Batteries, Heat Pumps, Thermal Energy Storage and Electric Vehicles Across the World up to 2050
,”
Sol. Energy
,
185
(
9
), pp.
406
423
. 10.1016/j.solener.2019.04.081
2.
Wang
,
C.
,
Dou
,
B.
,
Jiang
,
B.
,
Song
,
Y.
,
Du
,
B.
,
Zhang
,
C.
,
Wang
,
K.
,
Chen
,
H.
, and
Xu
,
Y.
,
2015
, “
Sorption-Enhanced Steam Reforming of Glycerol on Ni-Based Multifunctional Catalysts. International Journal of Hydrogen Energy
,”
Int. J. Hydrogen Energy
,
40
(
22
), pp.
7037
7044
. 10.1016/j.ijhydene.2015.04.023
3.
Zhang
,
Z. Y.
,
Wang
,
J. Y.
,
Feng
,
X.
,
Chang
,
L.
,
Chen
,
Y.
, and
Wang
,
X.
,
2018
, “
The Solutions to Electric Vehicle Air Conditioning Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
91
(
11
), pp.
443
463
. 10.1016/j.rser.2018.04.005
4.
Qi
,
Z.
,
2014
, “
Advances on air Conditioning and Heat Pump System in Electric Vehicles—A Review
,”
Renewable Sustainable Energy Rev.
,
38
(
10
), pp.
754
764
. 10.1016/j.rser.2014.07.038
5.
Zhu
,
C.
,
Wei
,
B.
,
Dong
,
C.
,
Shao
,
C.
, and
Shan
,
Y.
,
2019
, “
Exploring the Future Electric Vehicle Market and Its Impacts With an Agent-Based Spatial Integrated Framework: A Case Study of Beijing, China
,”
J. Cleaner Prod.
,
221
(
16
), pp.
710
737
. 10.1016/j.jclepro.2019.02.262
6.
Wager
,
G.
,
Whale
,
J.
, and
Braunl
,
T.
,
2016
, “
Driving Electric Vehicles at Highway Speeds: The Effect of Higher Driving Speeds on Energy Consumption and Driving Range for Electric Vehicles in Australia
,”
Renewable Sustainable Energy Rev.
,
63
(
11
), pp.
158
165
. 10.1016/j.rser.2016.05.060
7.
Li
,
K.
,
Xu
,
D.
,
Lan
,
J.
,
Su
,
L.
, and
Fang
,
Y.
,
2019
, “
An Experimental and Theoretical Investigation of Refrigerant Charge on a Secondary Loop Air-Conditioning Heat Pump System in Electric Vehicles
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3381
3398
. 10.1002/er.4476
8.
Zhang
,
Z.
,
Wang
,
D.
,
Zhang
,
C.
, and
Chen
,
J.
,
2018
, “
Electric Vehicle Range Extension Strategies Based on Improved AC System in Cold Climate—A Review
,”
Int. J. Refrig.
,
88
(
4
), pp.
141
150
. 10.1016/j.ijrefrig.2017.12.018
9.
Kim
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2019
, “
Review on Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
149
(
4
), pp.
192
212
. 10.1016/j.applthermaleng.2018.12.020
10.
Pan
,
L.
,
Liu
,
C.
,
Zhang
,
Z.
,
Wang
,
T.
,
Shi
,
J.
, and
Chen
,
J.
,
2019
, “
Energy-Saving Effect of Utilizing Recirculated Air in Electric Vehicle Air Conditioning System
,”
Int. J. Refrig.
,
102
(
6
), pp.
122
129
. 10.1016/j.ijrefrig.2019.03.018
11.
Li
,
Z.
,
Khajepour
,
A.
, and
Song
,
J.
,
2019
, “
A Comprehensive Review of the Key Technologies for Pure Electric Vehicles
,”
Energy
,
182
(
17
), pp.
824
839
. 10.1016/j.energy.2019.06.077
12.
Liu
,
C.
,
Zhang
,
Y.
,
Gao
,
T.
,
Shi
,
J.
,
Chen
,
J.
,
Wang
,
T.
, and
Pan
,
L.
,
2018
, “
Performance Evaluation of Propane Heat Pump System for Electric Vehicle in Cold Climate
,”
Int. J. Refrig.
,
95
(
11
), pp.
51
60
. 10.1016/j.ijrefrig.2018.08.020
13.
Li
,
K.
,
Yu
,
J.
,
Liu
,
M.
,
Xu
,
D.
,
Su
,
L.
, and
Fang
,
Y.
,
2020
, “
A Study of Optimal Refrigerant Charge Amount Determination for Air-Conditioning Heat Pump System in Electric Vehicles
,”
Energies
,
13
(
3
), pp.
657
674
. 10.3390/en13030657
14.
Andersen
,
S.
,
Chowdhury
,
S.
,
Craig
,
T.
,
Kapoor
,
S.
,
Meena
,
J.
,
Nagarhalli
,
P.
,
Soffer
,
M.
,
Leitzel
,
L.
, and
Baker
,
J.
,
2017
, “
Comparative Manufacturing and Ownership Cost Estimates for Secondary Loop Mobile Air Conditioning Systems (SL-MACs)
,”
WCX™ 17: SAE World Congress Experience
,
Shanghai, China
,
Apr. 4
.
15.
Li
,
G.
,
Eisele
,
M.
,
Lee
,
H.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2014
, “
Experimental Investigation of Energy and Exergy Performance of Secondary Loop Automotive Air-Conditioning Systems Using Low-GWP (Global Warming Potential) Refrigerants
,”
Energy
,
68
(
5
), pp.
819
831
. 10.1016/j.energy.2014.01.018
16.
Lee
,
H.
, and
Lee
,
M.
,
2016
, “
Steady State and Start-up Performance Characteristics of Air Source Heat Pump for Cabin Heating in an Electric Passenger Vehicle
,”
Int. J. Refrig.
,
69
(
9
), pp.
232
242
. 10.1016/j.ijrefrig.2016.06.021
17.
Ahn
,
J. H.
,
Lee
,
J. S.
,
Baek
,
C.
, and
Kim
,
Y.
,
2016
, “
Performance Improvement of a Dehumidifying Heat Pump Using an Additional Waste Heat Source in Electric Vehicles With Low Occupancy
,”
Energy
,
115
(
1
), pp.
67
75
. 10.1016/j.energy.2016.08.104
18.
Zhou
,
G.
,
Su
,
L.
,
Li
,
K.
,
Fang
,
Y.
, and
Cheng
,
Q.
,
2018
, “
An Experimental Investigation of Dehumidifying and Reheating Performances of a Dual-Evaporator Heat Pump System in Electrified Vehicles
,”
Int. J. Energy Res.
,
42
(
2
), pp.
754
763
. 10.1002/er.3863
19.
Li
,
K.
,
Lan
,
J.
,
Cheng
,
Q.
,
Tang
,
Q.
,
Fang
,
Y.
, and
Su
,
L.
,
2019
, “
Investigation on the Influence of Refrigerant Charge Amount on the Cooling Performance of Air Conditioning Heat Pump System for Electrical Vehicle
,”
J. Therm. Sci.
,
28
(
2
), pp.
294
305
. 10.1007/s11630-018-1056-6
20.
Qin
,
F.
,
Zhang
,
G.
,
Xue
,
Q.
,
Zou
,
H.
, and
Tian
,
C.
,
2017
, “
Experimental Investigation and Theoretical Analysis of Heat Pump Systems With Two Different Injection Portholes Compressors for Electric Vehicles
,”
Appl. Energy
,
185
(
1
), pp.
2085
2093
. 10.1016/j.apenergy.2015.12.032
21.
Zou
,
H.
,
Wang
,
W.
,
Zhang
,
G.
,
Qin
,
F.
,
Tian
,
C.
, and
Yan
,
Y.
,
2016
, “
Experimental Investigation on an Integrated Thermal Management System with Heat Pipe Heat Exchanger for Electric Vehicle
,”
Energy Convers. Manage.
,
118
(
12
), pp.
88
95
. 10.1016/j.enconman.2016.03.066
22.
Jung
,
J.
,
Jeon
,
Y.
,
Cho
,
W.
, and
Kim
,
Y.
,
2020
, “
Effects of Injection-Port Angle and Internal Heat Exchanger Length in Vapor Injection Heat Pumps for Electric Vehicles
,”
Energy
,
193
(
4
), pp.
599
607
. 10.1016/j.energy.2019.116751
23.
Fan
,
J.
,
Zhang
,
C.
,
Wang
,
Z.
,
Dong
,
Y.
,
Nino
,
C.
,
Tariq
,
A.
, and
Strangas
,
E.
,
2010
, “
Thermal Analysis of Permanent Magnet Motor for the Electric Vehicle Application Considering Driving Duty Cycle
,”
IEEE. Trans. Magn.
,
46
(
6
), pp.
2493
2496
. 10.1109/TMAG.2010.2042043
24.
Shen
,
M.
, and
Gao
,
Q.
,
2020
, “
System Simulation on Refrigerant-Based Battery Thermal Management Technology for Electric Vehicles
,”
Energy Convers. Manage.
,
203
(
1
), pp.
1
13
. 10.1016/j.enconman.2019.112176
25.
Cen
,
J. W.
,
Li
,
Z. B.
, and
Jiang
,
F. M.
,
2018
, “
Experimental Investigation on Using the Electric Vehicle Air Conditioning System for Lithium-Ion Battery Thermal Management
,”
Energy Sustainable Dev.
,
45
(
4
), pp.
88
95
. 10.1016/j.esd.2018.05.005
You do not currently have access to this content.