Abstract

Microwave drilling is a machining process that utilizes microwave energy for removing the target material through ablation. In the present work, simulation and experimental studies were carried out to understand the effect of process parameters such as input power, dielectric medium, and dielectric flowrate on the heat-affected zone (HAZ), diametrical overcut (OC), and thermal stresses developed in the borosilicate glass workpieces during microwave drilling. Sub-millimeter holes were produced in workpieces at 2.45 GHz using a graphite tool in air and transformer oil with static (immersion depth = 45 mm) and dynamic conditions (flowrate: 16, 79, 141, and 204 cm3/s). Results indicate that a decrease in input power enhances the HAZ while drilling in air and static dielectric, whereas HAZ decreases (approximately 44% and 24%) in dynamic dielectric than air and static dielectric, respectively, due to better heat dissipation and flushing of debris. Machining time was minimum while drilling with static dielectric; however, it increased with the increase in dielectric flowrate and a decrease in input power. On the other hand, overcut increased at higher input powers and lower dielectric flowrates due to enhanced ablation and heat accumulation in the machining zone. Higher thermal stresses generated in borosilicate glass while drilling in air and static dielectric, whereas flowing dielectric produced lower thermal stresses. The study determines an optimum combination of flowrate (204 cm3/s) and input power (70 W) for minimum HAZ, overcut, and thermal stresses during microwave drilling.

References

1.
Kolhekar
,
K. R.
, and
Sundaram
,
M.
,
2018
, “
Study of Gas Film Characterization and Its Effect in Electrochemical Discharge Machining
,”
Precis. Eng.
,
53
, pp.
203
211
. 10.1016/j.precisioneng.2018.04.002
2.
Jerby
,
E.
,
Dikhtyar
,
V.
,
Aktushev
,
O.
, and
Grosglick
,
U.
,
2002
, “
The Microwave Drill
,”
Science
,
298
(
5593
), pp.
587
589
. 10.1126/science.1077062
3.
Jerby
,
E.
,
Aktushev
,
O.
, and
Dikhtyar
,
V.
,
2005
, “
Theoretical Analysis of the Microwave-Drill Near-Field Localized Heating Effect
,”
J. Appl. Phys.
,
97
(
3
), pp.
1
7
. 10.1063/1.1836011
4.
Kumar
,
G.
, and
Sharma
,
A. K.
,
2018
, “
Role of Dielectric Fluid and Concentrator Material in Microwave Drilling of Borosilicate Glass
,”
J. Manuf. Process.
,
33
, pp.
184
193
. 10.1016/j.jmapro.2018.05.010
5.
Kumar
,
G.
, and
Sharma
,
A. K.
,
2020
, “
On Processing Strategy to Minimize Defects While Drilling Borosilicate Glass With Microwave Energy
,”
Int. J. Adv. Manuf. Technol.
,
108
(
11–12
), pp.
3517
3536
. 10.1007/s00170-020-05563-9
6.
Jerby
,
E.
, and
Thompson
,
A. M.
,
2004
, “
Microwave Drilling of Ceramic Thermal-Barrier Coatings
,”
J. Am. Ceram. Soc.
,
87
(
2
), pp.
308
310
. 10.1111/j.1551-2916.2004.00308.x
7.
Eshet
,
Y.
,
Mann
,
R. R.
,
Anaton
,
A.
,
Yacoby
,
T.
,
Gefen
,
A.
, and
Jerby
,
E.
,
2006
, “
Microwave Drilling of Bones
,”
IEEE Trans. Biomed. Eng.
,
53
(
6
), pp.
1174
1182
. 10.1109/TBME.2006.873562
8.
Jerby
,
E.
,
Nerovny
,
Y.
,
Meir
,
Y.
,
Korin
,
O.
,
Peleg
,
R.
, and
Shamir
,
Y.
,
2017
, “
A Silent Microwave Drill for Deep Holes in Concrete
,”
IEEE Trans. Microwave Theory Tech.
,
66
(
1
), pp.
522
529
. 10.1109/TMTT.2017.2729509
9.
Jerby
,
E.
,
Aktushev
,
O.
,
Dikhtyar
,
V.
,
Livshits
,
P.
,
Anaton
,
A.
,
Yacoby
,
T.
,
Flaux
,
A.
,
Inberg
,
A.
, and
Armoni
,
D.
,
2004
, “
Microwave Drill Applications for Concrete, Glass and Silicon
,”
4th World Congress Microwave & Radio-Frequency Applications
,
Austin, TX
,
Nov. 7–12
, pp.
156
165
.
10.
Meir
,
Y.
, and
Jerby
,
E.
,
2012
, “
Localized Rapid Heating by Low-Power Solid-State Microwave Drill
,”
IEEE Trans. Microwave Theory Tech.
,
60
(
8
), pp.
2665
2672
. 10.1109/TMTT.2012.2198233
11.
Lautre
,
N. K.
,
Sharma
,
A. K.
,
Kumar
,
P.
, and
Das
,
S.
,
2015
, “
A Photoelasticity Approach for Characterization of Defects in Microwave Drilling of Soda Lime Glass
,”
J. Mater. Process. Technol.
,
225
, pp.
151
161
. 10.1016/j.jmatprotec.2015.05.026
12.
Lautre
,
N. K.
,
Sharma
,
A. K.
,
Pradeep
,
K.
, and
Das
,
S.
,
2015
, “
A Simulation Approach to Material Removal in Microwave Drilling of Soda Lime Glass at 2.45 GHz
,”
Appl. Phys. A
,
120
(
4
), pp.
1261
1274
. 10.1007/s00339-015-9370-2
13.
Lautre
,
N. K.
,
Sharma
,
A. K.
,
Das
,
S.
, and
Kumar
,
P.
,
2015
, “
On Crack Control Strategy in Near-Field Microwave Drilling of Soda Lime Glass Using Precursors
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041001
. 10.1115/1.4030478
14.
Kumar
,
G.
, and
Sharma
,
A. K.
,
2019
, “Analysis on Thermal Characteristics of Micro-Drilled Glass Using Microwave Energy at 2.45 GHz,”
Advances in Computational Methods in Manufacturing
,
R.
Narayanan
,
S.
Joshi
, and
U.
Dixit
, eds.,
Springer
,
Singapore
, pp.
557
568
.
15.
Lautre
,
N. K.
,
Sharma
,
A. K.
,
Kumar
,
P.
, and
Das
,
S.
,
2019
, “
Characterization of Drilled Hole in Low Melting Point Material During Low Power Microwave Drilling Process
,”
Mater. Res. Express
,
6
(
9
), p.
095329
. 10.1088/2053-1591/ab3299
16.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
.
17.
Kalyon
,
M.
, and
Yilbas
,
B. S.
,
2001
, “
Analytical Solution for Laser Evaporative Heating Process: Time Exponentially Decaying Pulse Case
,”
J. Phys. D: Appl. Phys.
,
34
(
22
), pp.
3303
3311
. 10.1088/0022-3727/34/22/315
18.
Yadav
,
V.
,
Jain
,
V. K.
, and
Dixit
,
P. M.
,
2002
, “
Thermal Stresses Due to Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
42
(
8
), pp.
877
888
. 10.1016/S0890-6955(02)00029-9
19.
Kumar
,
G.
,
Mishra
,
R. R.
, and
Sharma
,
A. K.
,
2020
, “
On Finite Element Analysis of Material Removal Rate in Microwave Drilling of Borosilicate Glass
,”
Mater. Today: Proc.
10.1016/j.matpr.2020.08.407
20.
Asano
,
M.
, and
Yasue
,
Y.
,
1986
, “
Mass Spectrometric Study of the Vaporization of Sodium Borosilicate Glasses
,”
J. Nucl. Mater.
,
138
(
1
), pp.
65
72
. 10.1016/0022-3115(86)90256-4
21.
Kothandaraman
,
C. P.
, and
Subramanyan
,
S. V.
,
2004
,
Heat and Mass Transfer Data Book
,
New Age International
,
India
.
22.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
,
1971
, “
Thermophysical Properties of Matter—The TPRC Data Series. Volume 2. Thermal Conductivity—Nonmetallic Solids. Thermophysical and Electronic Properties
,” Information Analysis Center, Lafayette IN.
23.
Goud
,
M.
,
Sharma
,
A. K.
, and
Jawalkar
,
C.
,
2016
, “
A Review on Material Removal Mechanism in Electrochemical Discharge Machining (ECDM) and Possibilities to Enhance the Material Removal Rate
,”
Precis. Eng.
,
45
, pp.
1
17
. 10.1016/j.precisioneng.2016.01.007
24.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
,
1990
, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
(
2
), pp.
775
784
. 10.1063/1.346783
25.
Ho
,
C. C.
,
Wu
,
D. S.
, and
Chen
,
J. C.
,
2018
, “
Flow-Jet-Assisted Electrochemical Discharge Machining for Quartz Glass Based on Machine Vision
,”
Measurement
,
128
, pp.
71
83
. 10.1016/j.measurement.2018.06.031
You do not currently have access to this content.