Abstract

An enhancement in heat transfer is the key objective in any thermal system where an efficient cooling is needed. This requirement becomes more important for turbulent flow. A turbulent dual jet is associated with entrainment and mixing processes in several applications. This article aims at enhancing the heat transfer rate by utilizing the wavy surface of a heated plate. Heat transfer and flow characteristics are studied using five low Reynolds-Averaged Navier–Stokes (RANS) turbulence models, namely, Yang and Shih k − ɛ (YS), Launder and Sharma k − ɛ (LS), realizable k − ɛ, renormalization group k − ɛ (RNG), and shear-stress transport k − ω (SST) models. The amplitude of the wavy surface is varied from 0.1 to 0.8 for the number of cycles fixed to 7. The Reynolds number and offset ratio are set to 15,000 and 3, respectively. An isothermal wall condition is used at the wavy wall. An experimental validation has been performed. An enhancement of 55.94% in heat transfer is achieved by the RNG k − ɛ model. Furthermore, it is noticed that the YS model fails to predict the flow separation as the amplitude of the sinusoidal wavy surface increases. However, the SST model reveals that the flow separates when the amplitude increases beyond 0.6. The thermal hydraulic performance (THP) is found to increase for the RNG model by approximately 13.9% for the maximum amplitude considered. As the profiles of the bottom walls change, various turbulence models predict different fluid flow characteristics.

References

1.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1997
, “
Comparison of Flow Characteristics in the Near Field of Two Parallel Plane Jets and an Offset Jet
,”
Phys. Fluids
,
9
(
10
), pp.
2919
2931
.
2.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2013
, “
Comparison of two low Reynolds Number Turbulence Models for Fluid Flow Study of Wall-Bounded Jets
,”
Int. J. Heat Mass Transfer
,
61
, pp.
365
380
.
3.
Kumar
,
A.
,
2015
, “
Mean Flow and Thermal Characteristics of a Turbulent Dual Jet Consisting of a Plane Wall Jet and a Parallel Offset Jet
,”
Numer. Heat Transfer, Part A
,
67
(
10
), pp.
1075
1096
.
4.
Kumar
,
A.
,
2015
, “
Mean Flow Characteristics of a Turbulent Dual Jet Consisting of a Plane Wall jet and a Parallel Offset Jet
,”
Comput. Fluids
,
114
, pp.
48
65
.
5.
Anderson
,
E. A.
, and
Spall
,
R. E.
,
2001
, “
Experimental and Numerical Investigation of Two-Dimensional Parallel Jets
,”
J. Fluid. Eng.
,
123
(
2
), pp.
401
406
.
6.
Chaab
,
M. A.
, and
Tachie
,
M. F.
,
2011
, “
Characteristics of Turbulent Three-Dimensional Offset Jets
,”
J. Fluid. Eng.
,
133
(
5
), p.
051203
.
7.
Kumar
,
A.
, and
Das
,
M. K.
,
2011
, “
Study of a Turbulent Dual jet Consisting of a Wall Jet and an Offset Jet
,”
J. Fluid. Eng.
,
133
(
10
), p.
101201
.
8.
Kim
,
D. S.
,
Yoon
,
S. H.
,
Lee
,
D. H.
, and
Kim
,
K. C.
,
1996
, “
Flow and Heat Transfer Measurements of a Wall Attaching Offset Jet
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2907
2913
.
9.
Holland
,
J. T.
, and
Liburdy
,
J. A.
,
1990
, “
Measurements of the Thermal Characteristics of a Heated Offset Jets
,”
Int. J. Heat Mass Transfer
,
33
(
1
), pp.
69
78
.
10.
Tang
,
Z.
,
Bergstrom
,
D. J.
, and
Bugg
,
J. D.
,
2017
, “
A Plane Turbulent Wall Jet on a Fully Rough Surface
,”
Int. J. Heat Fluid Flow
,
66
, pp.
258
264
.
11.
Gogineni
,
S.
, and
Shih
,
C.
,
1997
, “
Experimental Investigation of the Unsteady Structure of a Transitional Plane Wall jet
,”
Exp. Fluids
,
23
(
2
), pp.
121
129
.
12.
Chaab
,
M. A.
, and
Tachie
,
M. F.
,
2011
, “
Characteristics of Turbulent Three-Dimensional Wall Jets
,”
ASME J. Fluids Eng.
,
133
(
2
), p.
021201
.
13.
Kaffel
,
A.
,
Moureh
,
J.
,
Harion
,
J.
, and
Russeil
,
S.
,
2015
, “
Experimental Investigation of a Plane Wall Jet Subjected to an External Lateral Flow
,”
Exp. Fluids
,
56
(
95
), pp.
1
19
.
14.
Azim
,
M. A.
,
2013
, “
On the Structure of a Plane Turbulent Wall Jet
,”
J. Fluid. Eng.
,
135
(
8
), p.
084502
.
15.
Dejoan
,
A.
, and
Leschziner
,
M. A.
,
2005
, “
Large Eddy Simulation of a Plane Turbulent Wall jet
,”
Phys. Fluids
,
17
(
2
), p.
025102
.
16.
Lai
,
J. C. S.
, and
Lu
,
D.
,
1996
, “
Effect of Wall Inclination on the Mean Flow and Turbulence Characteristics in a Two—Dimensional Wall jet
,”
Int. J. Heat Fluid Flow
,
17
(
4
), pp.
377
385
.
17.
Lai
,
J. C. S.
, and
Lu
,
D.
,
1992
, “The Near Field Characteristics of a Two-Dimensional Wall jet,”
Recent Advances in Experimental Fluid Mechanics
,
FG
Zhuang
, ed.,
International Academic Publishers
,
China
, pp.
136
141
.
18.
Naqavi
,
I. Z.
,
Tyacke
,
J. C.
, and
Tucker
,
P. G.
,
2017
, “
A Numerical Study of a Plane Wall Jet With Heat Transfer
,”
Int. J. Heat Fluid Flow
,
63
, pp.
99
107
.
19.
Vishnuvardhanarao
,
E.
, and
Das
,
M. K.
,
2008
, “
Computation of Mean Flow and Thermal Characteristics of Incompressible Turbulent Offset Jet Flows
,”
Numer. Heat Transfer, Part A
,
53
(
8
), pp.
843
869
.
20.
Vishnuvardhanarao
,
E.
, and
Das
,
M. K.
,
2009
, “
Conjugate Heat Transfer Study of Incompressible Turbulent Offset Jet Flows
,”
Heat Mass Transfer
,
45
(
9
), pp.
1141
1152
.
21.
Gao
,
N.
, and
Ewing
,
D.
,
2007
, “
Experimental Investigation of Planar Offset Attaching Jets With Small Offset Distances
,”
Exp. Fluids
,
42
(
6
), pp.
941
954
.
22.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1995
, “
Mean Flow Characteristic in the Near Field of a Turbulent Offset Jet
,”
Twelfth Australasian Fluid Mechanics Conference
,
The University of Sydney
,
Australia
.
23.
Nasr
,
A.
, and
Lai
,
J. C. S.
,
1998
, “
A Turbulent Plane Offset Jet With Small Offset Ratio
,”
Exp. Fluids
,
24
(
1
), pp.
47
57
.
24.
Rathore
,
S. K.
, and
Das
,
M. K.
,
2015
, “
A Comparative Study of Heat Transfer Characteristics of Wall-Bounded Jets Using Different Turbulence Models
,”
Int. J. Therm. Sci.
,
89
, pp.
337
356
.
25.
Gao
,
N.
, and
Ewing
,
D.
,
2008
, “
On the Phase Velocities of the Motions in an Offset Attaching Planar Jet
,”
J. Turbul.
,
9
(
27
), pp.
1
21
.
26.
Nasr
,
A.
, and
Lai
,
J.
,
2000
, “
The Effects of Wall Inclination on an Inclined Offset jet
,”
10th International Symposium on the Application of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 10–13
, pp.
1
11
.
27.
Song
,
H. B.
,
Yoon
,
S. H.
, and
Lee
,
D. H.
,
2000
, “
Flow and Heat Transfer Characteristics of a Two-Dimensional Oblique Wall Attaching Offset Jet
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2395
2404
.
28.
Pramanik
,
S.
, and
Das
,
M. K.
,
2013
, “
Numerical Characterization of a Planar Turbulent Offset Jet Over an Oblique Wall
,”
Comput. Fluids
,
77
, pp.
36
55
.
29.
Pramanik
,
S.
, and
Das
,
M. K.
,
2014
, “
Computational Study of a Turbulent Wall Jet Flow on an Oblique Surface
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
2
), pp.
290
324
.
30.
Kwakye
,
B. N.
,
Rahman
,
M. S.
,
Boila
,
S.
,
Clark
,
S. P.
, and
Tachie
,
M. F.
,
2015
, “
PIV Study of a Turbulent Offset Jet Flow Over Square Ribs
,”
International Symposium on Turbulence and Shear Flow Phenomena (TSFP-9)
,
Melbourne, Australia
,
June 30–July 3
, pp.
1
6
.
31.
Kwakye
,
B. N.
,
Clark
,
S. P.
,
Tachie
,
M. F.
,
Malenchak
,
J.
, and
Muluye
,
G.
,
2015
, “
Flow Characteristics Within the Recirculation Region of Three-Dimensional Turbulent Offset Jet
,”
J. Hydraul. Res.
,
55
(
2
), pp.
230
242
.
32.
Assoudi
,
A.
,
Habli
,
S.
,
Said
,
N. M.
,
Bournot
,
H.
, and
Palec
,
G. L.
,
2015
, “
Experimental and Numerical Study of an Offset Jet With Different Velocity and Offset Ratios
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
490
512
.
33.
Kwakye
,
B. N.
,
Tachie
,
M. F.
, and
Clark
,
S. P.
,
2016
, “
Flow Characteristics of an Offset Jet Over a Surface Mounted Square Rib
,”
J. Turbul.
,
17
(
8
), pp.
727
757
.
34.
Kumar
,
S.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2021
, “
Effects of Pulsation Intensity on the Flow and Dispersion of Pulsed Dual Plane Jets
,”
Int. J. Mech. Sci.
,
193
, p.
106182
.
35.
Lin
,
Y. F.
, and
Sheu
,
M. J.
,
1991
, “
Interaction of Parallel Turbulent Plane Jets
,”
AIAA J.
,
29
(
9
), pp.
1372
1373
.
36.
Dau
,
V. T.
, and
Dinh
,
T. X.
,
2015
, “
Numerical Study and Experimental Validation of a Valveless Piezoelectric Air Blower for Fluidic Applications
,”
Sens. Actuators, B
,
221
, pp.
1077
1083
.
37.
Silva-Llanca
,
L.
, and
Ortega
,
A.
,
2017
, “
Vortex Dynamics and Mechanisms of Heat Transfer Enhancement in Synthetic Jet Impingement
,”
Int. J. Therm. Sci.
,
112
, pp.
153
164
.
38.
Wang
,
X. K.
, and
Tan
,
S. K.
,
2007
, “
Experimental Investigation of the Interaction Between a Plane Wall Jet and a Parallel Offset Jet
,”
Exp. Fluids
,
42
(
4
), pp.
551
562
.
39.
de Bock
,
H. P.
,
Persoons
,
T.
, and
Bodla
,
K.
,
2016
, “
Particle Image Velocimetry Study on Dual Cooling jet Flows
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Las Vegas, NV
,
May 31–June 3
, pp.
1366
1372
.
40.
Hnaien
,
N.
,
Marzouk
,
S.
,
Aissia
,
H. B.
, and
Jay
,
J.
,
2017
, “
CFD Investigation on the Offset Ratio Effect on Thermal Characteristics of a Combined Wall and Offset Jets Flow
,”
Heat Mass Transfer
,
53
(
8
), pp.
2531
2549
.
41.
Assoudi
,
A.
,
Said
,
N. M.
,
Bournot
,
H.
, and
Palec
,
G. L.
,
2018
, “
Comparative Study of Flow Characteristics of a Single Offset Jet and a Turbulent Dual Jet
,”
Heat Mass Transfer
,
55
(
4
), pp.
1109
1131
.
42.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Heat Transfer and Fluid Flow Characteristics of a Turbulent Dual Jet Impinging on a Wavy Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041017
.
43.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2020
, “
Effect of Wavy Wall Surface on Flow Structure and Thermal Characteristics of a Turbulent Dual Jet Comprising of a Wall Jet and an Offset Jet
,”
Proc. Inst. Mech. Eng., Part A
,
235
(
3
), pp.
524
545
.
44.
Singh
,
T. P.
,
Kumar
,
A.
, and
Satapathy
,
A. K.
,
2021
, “
Role of a Sinusoidal Wavy Surface in Enhancement of Heat Transfer Using Turbulent Dual Jet
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
3
), p.
032002
.
45.
Dewan
,
A.
,
Arakeri
,
J. H.
, and
Srinivasan
,
J.
,
1997
, “
A New Turbulence Model for the Axisymmetric Plume
,”
Appl. Math. Model.
,
21
(
11
), pp.
709
719
.
46.
Yang
,
Z.
, and
Shih
,
T. H.
,
1993
, “
New Time Scale Based
kɛ
Model for Near-Wall Turbulence
,”
AIAA J.
,
31
(
7
), pp.
1191
1198
.
47.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New kɛ Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
48.
Menter
,
F. R.
,
1992
, Technical Report, NASA Technical Memorandum 103975, NASA AMES Research Center Moffett Field, CA, October 1.
49.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.
50.
Menter
,
F. R.
,
1994
, “
Two-equation Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
51.
Wygnanski
,
I.
,
Katz
,
Y.
, and
Horev
,
E.
,
1992
, “
On the Applicability of Various Scaling Laws to the Turbulent Wall Jet
,”
J. Fluid Mech.
,
234
(
1
), pp.
669
690
.
You do not currently have access to this content.