Abstract

The cryogenic fluids’ flow performance and condensation characteristics with different heating powers in cryogenic loop heat pipes (CLHPs) have not been studied due to the difficulty of measurement at low temperature. In this study, a test system was designed and fabricated to characterize the condensation flow patterns of propylene CLHP and its heat transfer performance with different heating powers. The results show that the two-phase region length and flow pattern in the condenser were closely related to the operation mode of the CLHP. The vapor front in the condenser oscillated at the condenser inlet at a low heating power, which resulted in an unstable operation of the CLHP. Moreover, by comparing the condensation heat transfer coefficient (HTC) with the condensation correlations, the Cavallini correlation is recommended for the design of the CLHP condenser.

References

1.
Jouhara
,
H.
,
Chauhan
,
A.
,
Nannou
,
T.
,
Almahmoud
,
S.
, and
Wrobel
,
L. C.
,
2017
, “
Heat Pipe Based Systems—Advances and Applications
,”
Energy
,
128
, pp.
729
754
.
2.
Choi
,
J. H.
,
Sung
,
B. H.
,
Yoo
,
J. H.
,
Kim
,
C. J.
, and
Borca-Tasciuc
,
D.
,
2012
, “
Enhanced Miniature Loop Heat Pipe Cooling System for High Power Density Electronics
,”
ASME. J. Thermal Sci. Eng. Appl.
,
4
(
2
), p.
021008
.
3.
Chernysheva
,
M. A.
,
Yushakova
,
S. I.
, and
Maydanik
,
Y. F.
,
2015
, “
Effect of External Factors on the Operating Characteristics of a Copper–Water Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
81
, pp.
297
304
.
4.
Cho
,
H.
,
Jin
,
L.
, and
Jeong
,
S.
,
2020
, “
Experimental Investigation on Performances and Characteristics of Nitrogen-Charged Cryogenic Loop Heat Pipe With Wick-Mounted Condenser
,”
Cryogenics
,
105
, p.
102970
.
5.
Zakar
,
D.
,
Holman
,
T. D.
,
Maxwell
,
J.
,
Hoang
,
T.
, and
Baldauff
,
R. W.
,
2018
, “
Experimental Investigation of Temperature Oscillations in Loop Heat Pipes
,”
2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
.
6.
Ku
,
J.
, and
Rodriguez
,
J. I.
,
2003
, “
Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation
,”
33rd International Conference on Environmental Sciences (ICES)
,
Vancouver, British Columbia, Canada
,
July 7–10
, pp.
37
48
,
SAE Technical Paper Series No. 2003-01-2386
.
7.
Rodriguez
,
J. I.
, and
Na-Nakornpanom
,
A.
,
2001
, “
Investigation of Transient Temperature Oscillations of a Propylene Loop Heat Pipe
,”
SAE International 31st International Conference on Environmental Systems
,
Orlando, FL
,
July 9–12
,
SAE Technical Paper Series No. 2001-01-2235
.
8.
Chernysheva
,
M. A.
,
Yushakova
,
S. I.
, and
Maydanik
,
Y. F.
,
2014
, “
Copper–Water Loop Heat Pipes for Energy-Efficient Cooling Systems of Supercomputers
,”
Energy
,
69
, pp.
534
542
.
9.
Chang
,
X.
,
Watanabe
,
N.
, and
Nagano
,
H.
,
2019
, “
Visualization Study of a Loop Heat Pipe With Two Evaporators and One Condenser Under Gravity-Assisted Condition
,”
Int. J. Heat Mass Transfer
,
135
, pp.
378
391
.
10.
Bartuli
,
E.
,
Vershinin
,
S.
, and
Maydanik
,
Y. F.
,
2013
, “
Visual and Instrumental Investigations of a Copper–Water Loop Heat Pipe
,”
Int. J. Heat Mass Transfer
,
61
, pp.
35
40
.
11.
Yan
,
K.
,
Li
,
N.
,
Zhao
,
R.
,
Wu
,
Y.
, and
Xie
,
R.
,
2021
, “
Visualization Study on the Condensation in a Propylene Loop Heat Pipe Operating at Condenser Temperatures Between 153 and 283 K
,”
Appl. Therm. Eng.
,
85
, p.
116349
.
12.
Maydanik
,
Y. F.
,
2005
, “
Review: Loop Heat Pipes
,”
Appl. Therm. Eng.
,
25
, pp.
635
657
.
13.
Dobson
,
M. K.
, and
Chato
,
J. C.
,
1998
, “
Condensation in Smooth Horizontal Tubes
,”
ASME. J. Heat Transfer
,
120
(
1
), pp.
193
213
.
14.
Cavallini
,
A.
,
Censi
,
G.
,
Col
,
D. D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
A.
,
2002
, “
In-Tube Condensation of Halogenated Refrigerants/Discussion
,”
ASHRAE Trans.
,
108
(
1
), pp.
146
161
.
You do not currently have access to this content.