Abstract

This paper reports a mathematical model for predicting the fluid and heat flow characteristics of a Z-shaped corrugated perforated plate heat sink. Experiments were carried out to validate overall pressure drop as well as heat transfer predictions. A two-pronged approach was undertaken to design a corrugated perforated fin geometry: (a) macroscopic packaging, where the flow is distributed into conduits before being fed into perforated plates, and (b) microscopic design, where the pores are sized to maximize heat dissipation. A methodology typically used for predicting flow maldistribution is extended for packaging porous perforated plates in the macroscopic approach. An illustrative study is carried that estimates the optimum number of porous perforated plate fins that can be packaged within a given volume under fixed pressure drop constraint. In the microscopic approach, an order of magnitude analysis was carried out to decide the optimum diameter to maximize the heat transfer rate and expression for optimum diameter, and maximum achievable heat flux is proposed. Numerical simulations were carried out by considering full perforated plate porous fin geometry and single-channel geometry, and good agreement in their results was found. Finally, this study elaborates on the importance of achieving uniform flow distribution across the porous perforated plate fins.

References

1.
Wang
,
J.
,
2010
, “
Pressure Drop and Flow Distribution in Parallel-Channel Configurations of Fuel Cells: Z-Type Arrangement
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5498
5509
.
2.
Bassiouny
,
M. K.
, and
Martin
,
H.
,
1984
, “
Flow Distribution and Pressure Drop in Plate Heat Exchangers—II, Z-Type Arrangement
,”
Chem. Eng. Sci.
,
39
(
4
), pp.
701
704
.
3.
Badar
,
A. W.
,
Buchholz
,
R.
,
Lou
,
Y.
, and
Ziegler
,
F.
,
2012
, “
CFD Based Analysis of Flow Distribution in a Coaxial Vacuum Tube Solar Collector with Laminar Flow Conditions
,”
Int. J. Energy Environ.
,
3
(
1
), p.
24
.
4.
Kutscher
,
C. F.
,
1994
, “
Heat Exchange Effectiveness and Pressure Drop for Air Flow Through Perforated Plates with and Without Crosswind
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
2
), pp.
391
399
.
5.
Cho
,
H. H.
,
Jabbari
,
M. Y.
, and
Goldstein
,
R. J.
,
1997
, “
Experimental Mass (Heat) Transfer in and Near a Circular Hole in a Flat Plate
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2431
2443
.
6.
Sparrow
,
E. M.
, and
Ortiz
,
M. C.
,
1982
, “
Heat Transfer Coefficients for the Upstream Face of a Perforated Plate Positioned Normal to an Oncoming Flow
,”
Int. J. Heat Mass Transfer
,
25
(
1
), pp.
127
135
.
7.
Sparrow
,
E. M.
, and
Gurdal
,
U.
,
1981
, “
Heat Transfer at an Upstream-Facing Surface Washed by Fluid en Route to an Aperture in the Surface
,”
Int. J. Heat Mass Transfer
,
24
(
5
), pp.
851
857
.
8.
Dorignac
,
E.
,
Vullierme
,
J. J.
,
Broussely
,
M.
,
Foulon
,
C.
, and
Mokkadem
,
M.
,
2005
, “
Experimental Heat Transfer on the Windward Surface of a Perforated Flat Plate
,”
Int. J. Therm. Sci.
,
44
(
9
), pp.
885
893
.
9.
Van Decker
,
G. W. E.
,
Hollands
,
K. G. T.
, and
Brunger
,
A. P.
,
2001
, “
Heat-Exchange Relations for Unglazed Transpired Solar Collectors with Circular Holes on a Square or Triangular Pitch
,”
Sol. Energy
,
71
(
1
), pp.
33
45
.
10.
Tomić
,
M. A.
,
Ayed
,
S. K.
,
Stevanović
,
Ž. Ž
,
Đekić
,
P. S.
,
Živković
,
P. M.
, and
Vukićd
,
M. V.
,
2018
, “
Perforated Plate Convective Heat Transfer Analysis
,”
Int. J. Therm. Sci.
,
124
, pp.
300
306
.
11.
Rodriguez
,
J. I.
, and
Mills
,
A. F.
,
1996
, “
Heat Transfer and Flow Friction Characteristics of Perforated-Plate Heat Exchangers
,”
Exp. Heat Transfer
,
9
(
4
), pp.
335
356
.
12.
Zhang
,
H.
,
Chen
,
L.
,
Liu
,
Y.
, and
Li
,
Y.
,
2013
, “
Experimental Study on Heat Transfer Performance of Lotus-Type Porous Copper Heat Sink
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
172
180
.
13.
Muramatsu
,
K.
,
Ide
,
T.
,
Nakajima
,
H.
, and
Eaton
,
J. K.
,
2013
, “
Heat Transfer and Pressure Drop of Lotus-Type Porous Metals
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
7
), p.
072601
.
14.
Shaeri
,
M. R.
,
Yaghoubi
,
M.
, and
Jafarpur
,
K.
,
2009
, “
Heat Transfer Analysis of Lateral Perforated fin Heat Sinks
,”
Appl. Energy
,
86
(
10
), pp.
2019
2029
.
15.
Ismail
,
M. F.
,
Hasan
,
M. N.
, and
Saha
,
S. C.
,
2014
, “
Numerical Study of Turbulent Fluid Flow and Heat Transfer in Lateral Perforated Extended Surfaces
,”
Energy
,
64
, pp.
632
639
.
16.
Shaeri
,
M. R.
, and
Bonner
,
R.
,
2017
, “
Laminar Forced Convection Heat Transfer From Laterally Perforated-Finned Heat Sinks
,”
Appl. Therm. Eng.
,
116
, pp.
406
418
.
17.
Ibrahim
,
T. K.
,
Mohammed
,
M. N.
,
Mohammed
,
M. K.
,
Najafi
,
G.
,
Sidike
,
N. A. C.
,
Basrawi
,
F.
,
Abdalla
,
A. N.
, and
Hoseini
,
S. S.
,
2018
, “
Experimental Study on the Effect of Perforations Shapes on Vertical Heated Fins Performance Under Forced Convection Heat Transfer
,”
Int. J. Heat Mass Transfer
,
118
, pp.
832
846
.
18.
Chingulpitak
,
S.
,
Ahn
,
H. S.
,
Asirvatham
,
L. G.
, and
Wongwises
,
S.
,
2019
, “
Fluid Flow and Heat Transfer Characteristics of Heat Sinks with Laterally Perforated Plate Fins
,”
Int. J. Heat Mass Transfer
,
138
, pp.
293
303
.
19.
Li
,
C.
, and
Wirtz
,
R. A.
,
2005
, “
Development of a High Performance Heat Sink Based on Screen-fin Technology
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
1
), pp.
80
87
.
20.
Aboelsoud
,
W. A. A.
,
2013
, “
Study of Transport Phenomena in Carbon-Based Materials
,”
Ph.D. dissertation
,
University of Central Florida
,
Orlando, FL
.
21.
Huzayyin
,
O. A. S.
,
2011
, “
Computational Modeling of Convective Heat Transfer in Compact and Enhanced Heat Exchangers
,”
Ph.D. dissertation
,
University of Cincinnati
,
Cincinnati, OH
.
22.
Piradl
,
M.
, and
Pesteei
,
S. M.
,
2021
, “
Numerical Study of Heat Transfer of Laminar air Flow in Perforated Trapezoidal Corrugated Plate-Fin Ducts
,”
Proc. Inst. Mech. Eng., Part CProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
, p.
095440622110345
.
23.
Tanner
,
P.
,
Gorman
,
J.
, and
Sparrow
,
E.
,
2019
, “
Flow–Pressure Drop Characteristics of Perforated Plates
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
11
), pp.
4310
4333
.
24.
Florschuetz
,
L. W.
, and
Isoda
,
Y.
,
1983
, “
Flow Distributions and Discharge Coefficient Effects for Jet Array Impingement With Initial Crossflow
,”
J. Eng. Power
,
105
(
2
), pp.
296
304
.
25.
Moffat
,
R. J.
,
Eaton
,
J. K.
, and
Onstad
,
A.
,
2009
, “
A Method for Determining the Heat Transfer Properties of Foam-Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
1
), p.
011603
.
26.
Airflow Measurement Systems
,
2021
,
Design Concept
,
Airflow Measurement Systems
,
Chula Vista, USA
. [Online]. Available: http://www.fantester.com, Accessed May 19, 2021.
27.
Bejan
,
A.
, and
Sciubba
,
E.
,
1992
, “
The Optimal Spacing of Parallel Plates Cooled by Forced Convection
,”
Int. J. Heat Mass Transfer
,
35
(
12
), pp.
3259
3264
.
You do not currently have access to this content.