Abstract

The paper presents the comparative study of the vortex-induced cooling of a heated channel for the four different cross-sections of the rigid cylinder, i.e., circular, square, semi-circular, and triangular, with or without the rigid/flexible splitter plate at the Reynolds number (based on the hydraulic diameter) of 200. The study presents a comprehensive analysis of the flow and thermal performance for all the cases. For flexible plate cases, a partitioned approach is invoked to solve the coupled fluid-structure-convection problem. The simulations show the reduction in the thermal boundary layer thickness at the locations of the vortices resulting in the improved Nusselt number. Furthermore, the thin plate's flow-induced motion significantly increases the vorticity field inside the channel, resulting in improved mixing and cooling. It is observed that the plate-motion amplitude is maximum when the plate is attached to the cylinder with the triangular cross-section. The power requirement analysis shows that the flexible plate reduces the power required to pump the channel's cold fluid. Thus, based on the observations of the present study, the authors recommend using the flexible plate attached to the cylinder for improved convective cooling.

References

1.
Yu
,
Y.
,
Liu
,
Y.
, and
Amandolese
,
X.
,
2019
, “
A Review on Fluid-Induced Flag Vibrations
,”
ASME Appl. Mech. Rev.
,
71
(
1
), p.
010801
.
2.
Shelley
,
M. J.
, and
Zhang
,
J.
,
2011
, “
Flapping and Bending Bodies Interacting with Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
449
465
.
3.
Eugeni
,
M.
,
Elahi
,
H.
,
Fune
,
F.
,
Lampani
,
L.
,
Mastroddi
,
F.
,
Romano
,
G. P.
, and
Gaudenzi
,
P.
,
2020
, “
Numerical and Experimental Investigation of Piezoelectric Energy Harvester Based on Flag-Flutter
,”
Aerosp. Sci. Technol.
,
97
, p.
105634
.
4.
Shoele
,
K.
, and
Mittal
,
R.
,
2016
, “
Energy Harvesting by Flow-Induced Flutter in a Simple Model of an Inverted Piezoelectric Flag
,”
J. Fluid Mech.
,
790
, pp.
582
606
.
5.
Bazilevs
,
Y.
,
Korobenko
,
A.
,
Deng
,
X.
,
Yan
,
J.
,
Kinzel
,
M.
, and
Dabiri
,
J. O.
,
2014
, “
Fluid–Structure Interaction Modeling of Vertical-Axis Wind Turbines
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081006
.
6.
Elbing
,
B. R.
,
Young
,
S. D.
,
Jonson
,
M. L.
,
Campbell
,
R. L.
,
Craven
,
B. A.
,
Kunz
,
R. F.
, and
Koudela
,
K. L.
,
2020
, “
Experimental Characterization of High-Amplitude Fluid–Structure Interaction of a Flexible Hydrofoil at High Reynolds Number
,”
ASME J. Vib. Acoust.
,
142
(
4
), p.
041014
.
7.
Soti
,
A. K.
,
Bhardwaj
,
R.
, and
Sheridan
,
J.
,
2015
, “
Flow-induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1070
1081
.
8.
Gallegos
,
R. K. B.
, and
Sharma
,
R. N.
,
2017
, “
Flags as Vortex Generators for Heat Transfer Enhancement: Gaps and Challenges
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
950
962
.
9.
Mirzaee
,
H.
,
Dadvand
,
A.
,
Mirzaee
,
I.
, and
Shabani
,
R.
,
2012
, “
Heat Transfer Enhancement in Microchannels Using an Elastic Vortex Generator
,”
J. Enhanced Heat Transfer
,
19
(
3
), pp.
199
211
.
10.
Li
,
B.
,
Huang
,
K.
,
Yan
,
Y.
,
Li
,
Y.
,
Twaha
,
S.
, and
Zhu
,
J.
,
2017
, “
Heat Transfer Enhancement of a Modularised Thermoelectric Power Generator for Passenger Vehicles
,”
Appl. Energy
,
205
, pp.
868
879
.
11.
Khanafer
,
K.
,
Vafai
,
K.
, and
Gaith
,
M.
,
2016
, “
Fluid–Structure Interaction Analysis of Flow and Heat Transfer Characteristics Around a Flexible Microcantilever in a Fluidic Cell
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
315
322
.
12.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2019
, “
Application of Jets and Vortex Generators to Improve Air-Cooling and Temperature Uniformity in a Simple Battery Pack
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
2
), p.
021005
.
13.
Ahmadzadehtalatapeh
,
M.
,
2013
, “
An air-Conditioning System Performance Enhancement by Using Heat Pipe-Based Heat Recovery Technology
,”
Sci. Iran.
,
20
(
2
), pp.
329
336
.
14.
Kaur
,
I.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2019
, “
Thermal-Hydraulic Performance Enhancement by the Combination of Rectangular Winglet Pair and V-Shaped Dimples
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021013
.
15.
Dhungel
,
A.
,
Lu
,
Y.
,
Phillips
,
W.
,
Ekkad
,
S. V.
, and
Heidmann
,
J.
,
2009
, “
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021007
.
16.
Halder
,
N.
,
Saha
,
A. K.
, and
Panigrahi
,
P. K.
,
2021
, “
Enhancement in Film Cooling Effectiveness Using Delta Winglet Pair
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051026
.
17.
Xie
,
G.
,
Liu
,
Y.
,
Sunden
,
B.
, and
Zhang
,
W.
,
2013
, “
Computational Study and Optimization of Laminar Heat Transfer and Pressure Loss of Double-Layer Microchannels for Chip Liquid Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011004
.
18.
Klavetter
,
S. R.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2016
, “
The Effect of Rib Turbulators on Film Cooling Effectiveness of Round Compound Angle Holes Fed by an Internal Cross-Flow
,”
ASME J. Turbomach.
,
138
(
12
), p.
121006
.
19.
Abbassi
,
H.
,
Turki
,
S.
, and
Nasrallah
,
S. B.
,
2001
, “
Mixed Convection in a Plane Channel with a Built-in Triangular Prism
,”
Numer. Heat Transfer Part A Appl.
,
39
(
3
), pp.
307
320
.
20.
Léal
,
L.
,
Miscevic
,
M.
,
Lavieille
,
P.
,
Amokrane
,
M.
,
Pigache
,
F.
,
Topin
,
F.
,
Nogarède
,
B.
, and
Tadrist
,
L.
,
2013
, “
An Overview of Heat Transfer Enhancement Methods and new Perspectives: Focus on Active Methods Using Electroactive Materials
,”
Int. J. Heat Mass Transfer
,
61
, pp.
505
524
.
21.
Meis
,
M.
,
Varas
,
F.
,
Velázquez
,
A.
, and
Vega
,
J. M.
,
2010
, “
Heat Transfer Enhancement in Micro-Channels Caused by Vortex Promoters
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
29
40
.
22.
Li
,
Z.
,
Xu
,
X.
,
Li
,
K.
,
Chen
,
Y.
,
Huang
,
G.
,
Chen
,
C.-l.
, and
Chen
,
C.-H.
,
2018
, “
A Flapping Vortex Generator for Heat Transfer Enhancement in a Rectangular Airside fin
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1340
1356
.
23.
Turek
,
S.
, and
Hron
,
J.
,
2006
, “Proposal for Numerical Benchmarking of Fluid-Structure Interaction Between an Elastic Object and Laminar Incompressible Flow,”
Fluid-Structure Interaction
,
Springer
,
Berlin, Heidelberg
, pp.
371
385
.
24.
Dadvand
,
A.
,
Hosseini
,
S.
,
Aghebatandish
,
S.
, and
Khoo
,
B. C.
,
2019
, “
Enhancement of Heat and Mass Transfer in a Microchannel via Passive Oscillation of a Flexible Vortex Generator
,”
Chem. Eng. Sci.
,
207
, pp.
556
580
.
25.
Shi
,
J.
,
Hu
,
J.
,
Schafer
,
S. R.
, and
Chen
,
C. L.
,
2014
, “
Numerical Study of Heat Transfer Enhancement of Channel via Vortex-Induced Vibration
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
838
845
.
26.
Eckert
,
E. R. G.
, and
Soehngen
,
E.
,
1952
, “
Distribution of Heat Transfer Coefficients Around Circular Cylinders in Cross Flow at Reynolds Numbers From 20 to 500
,”
Trans. ASME
,
74
, pp.
343
347
.
27.
Knudsen
,
J. D.
, and
Katz
,
D. L.
,
1958
,
Fluid Dynamics and Heat Transfer
,
McGraw- Hill
,
New York
.
28.
Zhuauskas
,
A.
,
1972
, “Heat Transfer From Tubes in Cross-Flow,”
Advances in Heat Transfer
,
JP
Harnett
, and
TF
Irwine
, eds.,
Academic Press
,
New York
.
29.
Dhondt
,
G.
,
2004
,
The Finite Element Method for Three-Dimensional Thermomechanical Applications
,
John Wiley & Sons
.
30.
Tukovic
,
Z.
, and
Jasak
,
H.
,
2007
, “
Updated Lagrangian Finite Volume Solver for Large Deformation Dynamic Response of Elastic Body
,”
Trans. FAMENA
,
31
(
1
), p.
55
.
31.
Bungartz
,
H. J.
,
Lindner
,
F.
,
Gatzhammer
,
B.
,
Mehl
,
M.
,
Scheufele
,
K.
,
Shukaev
,
A.
, and
Uekermann
,
B.
,
2016
, “
preCICE–a Fully Parallel Library for Multi-Physics Surface Coupling
,”
Comput. Fluids
,
141
, pp.
250
258
.
32.
Yang
,
S.-J.
,
2003
, “
Numerical Study of Heat Transfer Enhancement in a Channel Flow Using an Oscillating Vortex Generator
,”
Heat Mass Transfer
,
39
(
3
), pp.
257
265
.
You do not currently have access to this content.