Abstract

Characteristics of impinging flames from a multi-slot burner fueled by synthetic gas are studied using a comprehensive numerical model. A multi-slot burner with five fuel slots and six air slots arranged in an alternately has been analyzed. The power rating of the burner is kept at 10 kW, and the air flowrate is fixed at 400% of the stoichiometric air required for the net fuel flowrate. The numerical model incorporates a short chemical kinetic mechanism, variable thermophysical properties, full multicomponent diffusion, thermal diffusion and a radiation sub-model. The location of the solid surface from the burner exit, primary air in fuel stream, dimensions of solid surfaces, and their temperatures have been varied to study the heat flux distributions from impinging flames. Results show that the location of the solid surface from the burner ports and partial premixing affect the heat transfer characteristics. The heat fluxes received by the side and top surfaces depend on the characteristics of neighboring flames located around the central flame. The heat flux distribution and the net heat flux received by the surface are found to be uniform and optimum at a height of 90 mm from the burner exit. Increasing the length of the impinging surface has negligible influence on average heat flux and CO production. The mass fraction of CO is affected by heating height and partial premixing. It remains almost constant for varying temperatures of the impinging surfaces. Primary aeration of 20% is found to be optimum for higher net heat flux and lower CO emissions.

References

1.
Dong
,
L. L.
,
Cheung
,
C. S.
, and
Leung
,
C. W.
,
2002
, “
Heat Transfer From an Impinging Premixed Butane/Air Slot Flame Jet
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
979
992
.
2.
Heidenreich
,
S.
, and
Foscolo
,
P. U.
,
2015
, “
New Concepts in Biomass Gasification
,”
Prog. Energy Combust. Sci.
,
46
, pp.
72
95
.
3.
Dong
,
L. L.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2003
, “
Heat Transfer of a Row of Three Butane-Air Flame Jets Impinging on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
46
(
1
), pp.
113
125
.
4.
Baukal
,
C. E.
, and
Gebhart
,
B.
,
1995
, “
A Review of Flame Impingement Heat Transfer Studies Part 1: Experimental Conditions
,”
Combust. Sci. Technol.
,
104
(
4–6
), pp.
339
357
.
5.
Baukal
,
C. E.
, and
Gebhart
,
B.
,
1995
, “
A Review of Flame Impingement Heat Transfer Studies Part 2: Measurements
,”
Combust. Sci. Technol.
,
104
(
4–6
), pp.
359
385
.
6.
Kwok
,
L. C.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2003
, “
Heat Transfer Characteristics of Slot and Round Premixed Impinging Flame Jets
,”
Exp. Heat Transfer
,
16
(
2
), pp.
111
137
.
7.
Zhao
,
Z.
,
Wong
,
T. T.
, and
Leung
,
C. W.
,
2004
, “
Impinging Premixed Butane/Air Circular Laminar Flame Jet Influence of Impingement Plate on Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5021
5031
.
8.
Hou
,
S. S.
, and
Ko
,
Y. C.
,
2004
, “
Effects of Heating Height on Flame Appearance, Temperature Field and Efficiency of an Impinging Laminar Jet Flame Used in Domestic gas Stoves
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1583
1595
.
9.
Dong
,
L. L.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2004
, “
Heat Transfer and Wall Pressure Characteristics of a Twin Premixed Butane/Air Flame Jets
,”
Int. J. Heat Mass Transfer
,
47
(
3
), pp.
489
500
.
10.
Kwok
,
L. C.
,
Leung C
,
W.
, and
Cheung
,
C. S.
,
2005
, “
Heat Transfer Characteristics of an Array of Impinging Premixed Slot Flame Jets
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1727
1738
.
11.
Tuttle
,
S. G.
,
Webb
,
B. W.
, and
McQuay
,
M. Q.
,
2005
, “
Convective Heat Transfer From a Partially Premixed Impinging Flame Jet. Part I: Time-Averaged Results
,”
Int. J. Heat Mass Transfer
,
48
(
7
), pp.
1236
1251
.
12.
Tuttle
,
S. G.
,
Webb
,
B. W.
, and
McQuay
,
M. Q.
,
2005
, “
Convective Heat Transfer From a Partially Premixed Impinging Flame Jet. Part II: Time-Resolved Results
,”
Int. J. Heat Mass Transfer
,
48
(
7
), pp.
1252
1266
.
13.
Huang
,
X. Q.
,
Leung
,
C. W.
,
Chan
,
C. K.
, and
Probert
,
S. D.
,
2006
, “
Thermal Characteristics of a Premixed Impinging Circular Laminar-Flame Jet With Induced Swirl
,”
Appl. Energy
,
83
(
4
), pp.
401
411
.
14.
Ng
,
T. K.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2007
, “
Experimental Investigation on the Heat Transfer of an Impinging Inverse Diffusion Flame
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3366
3375
.
15.
Dong
,
L. L.
,
Cheung
,
C. S.
, and
Leung
,
C. W.
,
2007
, “
Heat Transfer Characteristics of an Impinging Inverse Diffusion Flame Jet. Part II: Impinging Flame Structure and Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
(
25–26
), pp.
5124
5138
.
16.
Subhash
,
C.
, and
Anjan
,
R.
,
2008
, “
An Experimental and Numerical Study of Stagnation Point Heat Transfer for Methane/Air Laminar Flame Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3595
3607
.
17.
Zhao
,
Z.
,
Yuen
,
D. W.
,
Leung
,
C. W.
, and
Wong
,
T. T.
,
2009
, “
Thermal Performance of a Premixed Impinging Circular Flame Jet Array With Induced-Swirl
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
159
166
.
18.
Collazo
,
J.
,
Porteiro
,
J.
,
Míguez
,
J. L.
,
Granada
,
E.
, and
Gómez
,
M. A.
,
2012
, “
Numerical Simulation of a Small-Scale Biomass Boiler
,”
Energy Convers. Manage.
,
64
, pp.
87
96
.
19.
Makmool
,
U.
,
Jugjai
,
S.
, and
Tia
,
S.
,
2013
, “
Structures and Performances of Laminar Impinging Multiple Premixed LPG–Air Flame
,”
Fuel
,
112
, pp.
254
262
.
20.
Mira
,
M. D.
,
Jiang
,
X.
,
Moulinec
,
C.
, and
Emerson
,
D. R.
,
2013
, “
Numerical Investigation of the Effects of Fuel Variability on the Dynamics of Syngas Impinging Jet Flames
,”
Fuel
,
103
, pp.
646
662
.
21.
Dong
,
L. L.
,
Cheung
,
C. S.
, and
Leung
,
C. W.
,
2013
, “
Heat Transfer Optimization of an Impinging Port-Array Inverse Diffusion Flame Jet
,”
Energy
,
49
, pp.
182
192
.
22.
Hindasageri
,
V.
,
Kuntikana
,
P.
,
Tajik
,
A. R.
,
Vedula
,
R. P.
, and
Prabhu
,
S. V.
,
2015
, “
An Experimental and Numerical Investigation of Heat Transfer Distribution of Perforated Plate Burner Flames Impinging on a Flat Plate
,”
Int. J. Therm. Sci.
,
94
, pp.
156
169
.
23.
Hindasageri
,
V.
,
Vedula
,
R. P.
, and
Prabhu
,
S. V.
,
2015
, “
Heat Transfer Distribution for Three Interacting Methane–Air Premixed Impinging Flame Jets
,”
Int. J. Heat Mass Transfer
,
88
, pp.
914
925
.
24.
Wei
,
Z. L.
,
Zhen
,
H. S.
,
Leung
,
C. W.
,
Cheung
,
C. S.
, and
Huang
,
Z. H.
,
2015
, “
Heat Transfer Characteristics and the Optimized Heating Distance of Laminar Premixed Biogas-Hydrogen Bunsen Flame Impinging on a Flat Surface
,”
Int. J. Hydrogen Energy
,
40
(
45
), pp.
15723
15731
.
25.
Wei
,
Z. L.
,
Leung
,
C. W.
,
Cheung
,
C. S.
, and
Huang
,
Z. H.
,
2016
, “
Effects of H2 and CO2 Addition on the Heat Transfer Characteristics of Laminar Premixed Biogas–Hydrogen Bunsen Flame
,”
Int. J. Heat Mass Transfer
,
98
, pp.
359
366
.
26.
Morad
,
M. R.
,
Momeni
,
A.
,
Ebrahimi Fordoei
,
E.
, and
Ashjaee
,
M.
,
2016
, “
Experimental and Numerical Study on Heat Transfer Characteristics for Methane/Air Flame Impinging on a Flat Surface
,”
Int. J. Therm. Sci.
,
110
, pp.
229
240
.
27.
Pramod
,
K.
, and
Prabhu
,
S. V.
,
2017
, “
Effect of Mixture Composition on Heat Transfer Characteristics of Impinging Methane-Air Flame Jets of Tube Burners Equipped With Twisted Tapes
,”
Int. J. Therm. Sci.
,
111
, pp.
409
422
.
28.
Pramod
,
K.
, and
Prabhu
,
S. V.
,
2017
, “
Thermal Investigations on Methane-Air Premixed Flame Jets of Multi-port Burners
,”
Energy
,
123
, pp.
218
228
.
29.
Chiu
,
C. P.
,
Yeh
,
S. I.
,
Tsai
,
Y. C.
, and
Yang
,
J. T.
,
2017
, “
An Investigation of Fuel Mixing and Reaction in a CH4/Syngas/Air Premixed Impinging Flame With Varied H2/CO Proportion
,”
Energies
,
10
(
7
), p.
900
.
30.
Zhen
,
H. S.
,
Zhang
,
L.
,
Wei
,
Z. L.
,
Chen
,
Z. B.
, and
Huang
,
Z. H.
,
2019
, “
A Numerical Study of the Heat Transfer of an Impinging Round-Jet Methane Bunsen Flam
,”
Fuel
,
251
, pp.
730
738
.
31.
Farnaz
,
B.-K.
,
Houshfar
,
E.
,
Yousefi-Asli
,
V.
, and
Ashjaee
,
M.
,
2019
, “
Experimental Investigation on Heat Transfer Characteristics of Partially Premixed Round Methane-Air Impinging Flame Jet Using Mach-Zehnder Interferometry
,”
Int. J. Therm. Sci.
,
137
, pp.
601
615
.
32.
Parampreet
,
S.
,
Velamati
,
R. K.
,
Prathap
,
C.
,
Mohammad
,
A.
, and
Chander
,
S.
,
2019
, “
Study of Flow Patterns and Impingement Heat Transfer for an Annular Array of Eight Co-rotating Dual-Swirling Flame
,”
Int. J. Heat Mass Transfer
,
144
, p.
118657
.
33.
Haisheng
,
Z.
,
Du
,
B.
,
Liu
,
X.
,
Liu
,
Z.
, and
Wei
,
Z.
,
2021
, “
Experimental Investigation on the Heat Flux Distribution and Pollutant Emissions of Slot LPG/Air Premixed Impinging Flame Array
,”
Energies
,
14
(
19
), p.
6255
.
34.
Mithun
,
D.
,
Ganguly
,
R.
,
Datta
,
A.
,
Verma
,
M. M.
, and
Bera
,
A. K.
,
2020
, “
Computational Fluid Dynamic Analyses of Flow and Combustion in a Domestic Liquefied Petroleum Gas Cookstove Burner—Part II: Burning Characteristics and Overall Performance
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031011
.
35.
ANSYS Fluent Release, 17.2, Fluent User Guide, ANSYS Inc.
36.
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Gardiner
,
J. W. C.
,
Lissianski
,
V.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
, and
Goldenberg
,
M.
, http://combustion.berkeley.edu/gri-mech/new21/version21/text21.html
37.
Barlow
,
R. S.
,
Smith
,
N. S. A.
,
Chen
,
J. Y.
, and
Bilger
,
R. W.
,
1999
, “
Nitric Oxide Formation in Dilute Hydrogen Jet Flames: Isolation of the Effects of Radiation and Turbulence–Chemistry Sub Models
,”
Combust. Flame
,
117
(
1–2
), pp.
4
31
.
38.
Ashrafi
,
Z. N.
, and
Ashjaee
,
M.
,
2015
, “
Temperature Field Measurement of an Array of Laminar Premixed Slot Flame Jets Using Mach-Zehnder Interferometry
,”
Opt. Lasers Eng.
,
68
, pp.
194
202
.
39.
Couto
,
N.
,
Rouboa
,
A.
,
Silva
,
V.
,
Monteiro
,
E.
, and
Bouziane
,
K.
,
2013
, “
Influence of the Biomass Gasification Processes on the Final Composition of Syngas
,”
Energy Procedia
,
36
, pp.
596
606
.
You do not currently have access to this content.