Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The design and implementation of new thermal protection systems for hypersonic flight requires extensive knowledge of how the high-temperature, chemically reacting flow interacts with the material surface. Analysis of these gas–surface interactions is commonly performed in high-enthalpy ground testing facilities, however the demand and cost of large-scale plasma wind tunnels reduces their viability for supporting the material development process. To this end, the University of Tennessee has constructed a continuous 60-kW plasma torch facility known as Hypersonic MAterial TEsting (HyperMATE). This torch utilizes three commercial plasma cutters as plasma sources that discharge to a common copper anode. The plumes mix in a plenum chamber past the anode and evacuate from a converging nozzle, producing a subsonic flow that mimics the stagnation point heating conditions encountered in hypersonic flight. This paper focuses on the design and characterization of this facility, describing the electric arc generation process and detailing the experimental techniques used for characterizing the flow temperature, pressure, and heat flux. A testing campaign on graphite disks will be discussed, displaying the capabilities of the facility and the optical instrumentation used to measure in situ surface temperature and emissivity.

References

1.
Anderson
,
J. D.
,
2006
,
Hypersonic and High Temperature Gas Dynamics
, 2nd ed.,
AIAA
,
Reston, VA
.
2.
Josyula
,
E.
,
2015
, “
Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances
,” AIAA, No. 4.103292.
3.
Herdrich
,
G.
,
Fertig
,
M.
,
Petkow
,
D.
,
Steinbeck
,
A.
, and
Fasoulas
,
S.
,
2012
, “
Experimental and Numerical Techniques to Assess Catalysis
,”
Prog. Aerosp. Sci.
,
48
(
1
), pp.
27
41
.
4.
Chazot
,
O.
,
Krassilchikoff
,
H. W.
, and
Thoemel
,
J.
,
2008
, “
TPS Ground Testing in Plasma Wind Tunnel for Catalytic Properties Determination
,” AIAA Paper 2008-1252.
5.
Shepard
,
C. E.
,
Watson
,
V. R.
, and
Stine
,
H. A.
,
1964
, “
Evaluation of a Constricted-Arc Supersonic Jet
,” NASA, Tech. Rep. NASA TN D-2066.
6.
Dennis
,
P. R.
,
Smith
,
C. R.
,
Gates
,
D. W.
, and
Bond
,
J. B.
,
1965
, “
Technology Survey: Plasma Jet Technology
,” NASA, Tech. Rep. SP-5033.
7.
Baals
,
D. D.
, and
Corliss
,
W. R.
,
1981
, “Wind Tunnels in the Space Age,”
Wind Tunnels of NASA
,
National Aeronautics and Space Administration
,
Washington DC
, pp.
75
100
.
8.
Lu
,
F. K.
, and
Marren
,
D. E.
,
2002
,
Advanced Hypersonic Test Facilities
,
AIAA
,
Reston, VA
.
9.
Terrazas-Salinas
,
I.
,
2022
, “
Test Planning Guide for NASA Ames Research Center Arc Jet Complex and Range Complex
,”
NASA, Tech. Rep.
A029-9701-XM3 Rev. J.
10.
Stewart
,
D. A.
,
Gokcen
,
T.
, and
Chen
,
Y.
,
2009
, “
Characterization of Hypersonic Flows in the AHF and IHF NASA Ames Arc-Jet Facilities
,” AIAA Paper 2009-4237.
11.
Balter-Peterson
,
A.
,
Nichols
,
F.
,
Mifsud
,
B.
, and
Love
,
W.
,
1992
, “
Arc Jet Testing in NASA Ames Research Center Thermophysics Facilities
,” AIAA Paper 1992-5041.
12.
Smith
,
D. M.
, and
Younker
,
T.
,
2005
, “
Comparative Ablation Testing of Carbon Phenolic TPS Materials in the AEDC-H1 Arcjet
,”
AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference
,
Capua, Italy
,
May 16–20
.
13.
Smith
,
D. M.
, and
Felderman
,
E.
,
2006
, “
Aerothermal Testing of Space and Missile Materials in the Arnold Engineering Development Center Arc Jet Facilities
,”
25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference
,
San Francisco, CA
,
June 5–8
, p.
3293
.
14.
Bottin
,
B.
,
Chazot
,
O.
,
Carbonaro
,
M.
,
Vander Haegen
,
V.
, and
Paris
,
S.
,
1999
,
Measurement Techniques for High Enthalpy and Plasma Flows
,
RTO/NATO
,
Neuilly-sur-Seine, France
, pp.
6-1
6-26
.
15.
Bottin
,
B.
,
Carbonaro
,
M.
,
Chazot
,
O.
,
Degrez
,
G.
,
Vanden Abeele
,
D.
,
Barbante
,
P.
,
Paris
,
S.
,
Van Der Haegen
,
V.
,
Magin
,
T.
, and
Playez
,
M.
,
2004
, “
A Decade of Aerothermal Plasma Research at the von Karman Institute
,”
Contrib. Plasma Phys.
,
44
(
5–6
), pp.
472
477
.
16.
Playez
,
M.
,
Fletcher
,
D. G.
,
Marschall
,
J.
,
Fahrenholtz
,
W. G.
,
Hilmas
,
G. E.
, and
Zhu
,
S.
,
2009
, “
Optical Emission Spectroscopy During Plasmatron Testing of ZrB2-SiC Ultrahigh-Temperature Ceramic Composites
,”
J. Thermophys. Heat Transfer
,
23
(
2
), pp.
279
285
.
17.
Chazot
,
O.
, and
Panerai
,
F.
,
2015
, “High-Enthalpy Facilities and Plasma Wind Tunnels for Aerothermodynamics Ground Testing,”
Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances
,
E.
Josyula
, ed.,
AIAA
,
Reston, VA
, pp.
329
342
.
18.
Capponi
,
L.
,
Oldham
,
T.
,
Konnik
,
M.
,
Stephani
,
K.
,
Bodony
,
D. J.
,
Panesi
,
M.
,
Elliott
,
G. S.
, and
Panerai
,
F.
,
2023
, “
Aerothermal Characterization of the Plasmatron X Wind Tunnel: Heat Flux, Stagnation Pressure and Jet Unsteadiness
,” AIAA Paper 2023-1338.
19.
Greene
,
B. R.
,
Clemens
,
N. T.
,
Varghese
,
P. L.
,
Bouslog
,
S.
, and
Papa
,
S. V. D.
,
2017
, “
Characterization of a 50 kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials
,” AIAA Paper 2017-0394.
20.
Fries
,
D.
,
Clemens
,
N. T.
, and
Varghese
,
P.
,
2022
, “
Time Dynamics of an Inductively Coupled Plasma Torch
,” AIAA Paper 2022-0984.
21.
Owens
,
W.
,
Uhl
,
J.
,
Dougherty
,
M.
,
Lutz
,
A.
,
Fletcher
,
D.
, and
Meyers
,
J.
,
2010
, “
Development of a 30 kW Inductively Coupled Plasma Torch for Aerospace Material Testing
,” AIAA Paper 2010-4322.
22.
Owens
,
W.
,
Meyers
,
J.
,
Fletcher
,
D.
,
Corso
,
J. D.
, and
Calomino
,
A.
,
2012
, “
Flexible TPS Surface Catalysis Testing in a 30 kW ICP Torch Facility
,” AIAA Paper 2012-3095.
23.
Jarrel
,
L.
,
Brocker
,
M.
,
Williams
,
A.
,
Dec
,
J. A.
, and
Ahuja
,
K.
,
2024
, “
Development and Characterization of an Inductively Coupled Plasma Jet for High-Temperature Testing
,” AIAA Paper 2024-1401.
24.
Ground
,
C.
,
Maddalena
,
L.
, and
Viti
,
V.
,
2013
, “
Computational Analysis and Characterization of the UTA 1.6 MW Arc-Heated Wind Tunnel Facility
,” AIAA Paper 2013-907.
25.
MacDonald
,
M.
,
Haw
,
M.
,
Philippidis
,
D.
,
Schickele
,
D.
,
Luis
,
D.
,
Hartman
,
J.
, and
McGlaughlin
,
M.
,
2020
, “
Initial Characterization of the 30 kW Miniature Arc Jet (mARC II) at NASA Ames Research Center
,” AIAA Paper 2020-3108.
26.
Splinter
,
S. C.
,
Bey
,
K. S.
, and
Gragg
,
J. G.
,
2011
, “
Comparative Measurements of Earth and Martian Entry Environments in the NASA Langley HYMETS Facility
,” AIAA Paper 2011-1014.
27.
Allcorn
,
E.
,
Robinson
,
S.
,
Tschoepe
,
D.
,
Koo
,
J. H.
, and
Natali
,
M.
,
2011
, “
Development of an Experimental Apparatus for Ablative Nanocomposites Testing
,” AIAA Paper 2011-6050.
28.
Miller-Oana
,
M.
,
Neff
,
P.
,
Valdez
,
M.
,
Powell
,
A.
,
Packard
,
M.
,
Walker
,
L. S.
, and
Corral
,
E. L.
,
2015
, “
Oxidation Behavior of Aerospace Materials in High Enthalpy Flows Using an Oxyacetylene Torch Facility
,”
J. Am. Ceram. Soc.
,
98
(
4
), pp.
1300
1307
.
29.
Hypertherm Inc.
,
2016
,
Hypertherm Powermax125 Operator Manual, Revision 3
,
Hypertherm Inc
,
Hanover, NH
.
30.
Samuels
,
K. E.
,
Clark
,
A.
,
McCord
,
W.
,
Holladay
,
S.
,
Zhang
,
Z.
, and
Baccarella
,
D.
,
2022
, “
Characterization of a Plasma Jet Flow Using Emission Spectroscopy and Laser-Induced Breakdown Velocimetry
,” AIAA Paper 2022-1784.
31.
Kolesnikov
,
A.
,
2000
, “
The Concept of Local Simulation for Stagnation Point Heat Transfer in Hypersonic Flows—Applications and Validation
,” AIAA Paper 2000-2515.
32.
Scott
,
C. D.
,
1993
, “
Survey of Measurements of Flow Properties in Arcjets
,”
J. Thermophys. Heat Transfer
,
7
(
1
), pp.
9
24
.
33.
Hightower
,
T. M.
,
MacDonald
,
C. L.
,
Martinez
,
E. R.
,
Balboni
,
J. A.
,
Anderson
,
K. F.
, and
Arnold
,
J. O.
,
2002
, “
Enthalpy by Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex
,”
48th International Instrumentation Symposium
,
San Diego, CA
,
May 5–9
.
34.
Jiji
,
L. M.
, and
Danesh-Yazdi
,
A. H.
,
2009
,
Heat Conduction
,
Springer
,
Berlin, Germany
.
35.
Lopez
,
B.
, and
Lino Da Silva
,
M.
,
2016
, “
SPARK: A Software Package for Aerodynamics, Radiation and Kinetics
,”
46th AIAA Thermophysics Conference
,
Washington, DC
,
June 13–17
.
36.
Samuels
,
K. E.
, and
Baccarella
,
D.
,
2024
, “
Emission Spectroscopy in the Plenum Region of an Arc-Heated Tunnel
,” AIAA Paper 2024-2829.
37.
Kee
,
R. J.
,
Coltrin
,
M. E.
,
Glarborg
,
P.
, and
Zhu
,
H.
,
2017
,
Chemically Reacting Flow: Theory, Modeling, and Simulation
,
John Wiley & Sons
,
Hoboken, NJ
.
38.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2022
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.6.0, https://www.cantera.org
39.
McBride
,
B. J.
,
Zehe
,
M. J.
, and
Gordon
,
S.
,
2002
, “
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
,” NASA, Tech. Rep. NASA TP2002-211556.
40.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F
,
Meeks
,
E.
,
Moffat
,
H. K.
, and
Lutz
,
E. A.
,
2000
, “
CHEMKIN Collection, Release 3.6
,” Reaction Design Inc., Tech. Rep. TRA-036-1.
41.
Park
,
C.
,
1993
, “
Review of Chemical-Kinetic Problems of Future NASA Missions. I-Earth Entries
,”
J. Thermophys. Heat Transfer
,
7
(
3
), pp.
385
398
.
42.
Scott
,
C. D.
,
1973
, “
Wall Boundary Equations With Slip and Catalysis for Multicomponent, Nonequilibrium Gas Flows
,”
NASA, Tech. Rep.
NASA™ X-58111.
43.
Mozetic
,
M.
, and
Zalar
,
A.
,
2000
, “
Recombination of Neutral Oxygen Atoms on Stainless Steel Surface
,”
Appl. Surf. Sci.
,
158
(
3–4
), pp.
263
267
.
44.
Smart
,
M. K.
,
2010
, “Scramjet Inlets,”
High Speed Propulsion: Engine Design-Integration and Thermal Management
, RTO-EN-AVT-185,
O.
Chazot
, ed.,
RTO/NATO
,
Neuilly-sur-Seine, France
, pp.
9-1
9-24
.
45.
Glass
,
D. E.
,
2008
, “
Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles
,” AIAA Paper 2008-2682.
46.
Hirschel
,
E. H.
,
2005
, “
Basics of Aerothermodynamics
,” 978-3-540-22132-6.
47.
Panerai
,
F.
, and
Chazot
,
O.
,
2012
, “
Characterization of Gas/Surface Interactions for Ceramic Matrix Composites in High Enthalpy, Low Pressure Air Flow
,”
Mater. Chem. Phys.
,
134
(
2–3
), pp.
597
607
.
48.
Balat-Pichelin
,
M.
,
Robert
,
J.
, and
Sans
,
J.
,
2006
, “
Emissivity Measurements on Carbon–Carbon Composites at High Temperature Under High Vacuum
,”
Appl. Surf. Sci.
,
253
(
2
), pp.
778
783
.
49.
Teodorescu
,
G.
,
2007
, “
Radiative Emissivity of Metals and Oxidized Metals at High Temperature
,” Doctoral Dissertation,
Auburn University
,
Auburn, AL
.
50.
Wu
,
X.
,
Fu
,
C.
, and
Zhang
,
Z. M.
,
2019
, “
Effect of Orientation on the Directional and Hemispherical Emissivity of Hyperbolic Metamaterials
,”
Int. J. Heat Mass Transfer
,
135
(
6
), pp.
1207
1217
.
51.
Murphy
,
E.
, and
Havelock
,
F.
,
1976
, “
Emissivity of Zirconium Alloys in Air in the Temperature Range 100–400 C
,”
J. Nucl. Mater.
,
60
(
2
), pp.
167
176
.
52.
Biasetto
,
L.
,
Manzolaro
,
M.
, and
Andrighetto
,
A.
,
2008
, “
Emissivity Measurements of Opaque Gray Bodies Up to 2000 °C by a Dual-Frequency Pyrometer
,”
Eur. Phys. J. A
,
38
(
11
), pp.
167
171
.
53.
Fries
,
D.
,
Stark
,
S. T.
,
Murray
,
J. S.
,
Clemens
,
N. T.
,
Varghese
,
P. L.
,
Bhakta
,
R.
, and
Kearney
,
S. P.
,
2024
, “
Nanosecond CARS Measurements of Temperature and Relative CO Concentration in the Boundary Layer of a Graphite Ablator in an Inductively Coupled Plasma Torch
,” AIAA Paper 2024-0446.
You do not currently have access to this content.