Graphical Abstract Figure

Liquid fraction contour of nickel foam/PCM/MXene composite in the DuT-TES system

Graphical Abstract Figure

Liquid fraction contour of nickel foam/PCM/MXene composite in the DuT-TES system

Close modal

Abstract

This research explores the numerical investigation of melting processes in duplex and triplex tube latent heat thermal energy storage (LHTES) systems utilizing phase change material (PCM) enhanced with nickel foam and MXene nanoparticles. By incorporating a nickel foam/PCM/MXene (5% v/v) composite, the research scrutinizes the effects on melting characteristics, Stefan and Fourier numbers, and thermal behavior of both duplex tube thermal energy storage (DuT-TES) and triplex tube thermal energy storage (TrT-TES) configurations. A comprehensive analysis encompassing liquid fraction, melting temperature contours across varying melting durations, exergy destruction, exergetic efficiency, system efficiency, and the stored energy is conducted. The findings indicate that systems employing nickel foam/PCM–MXene composite exhibit superior performance compared to those utilizing nickel foam/PCM or pure PCM, resulting in a notable reduction in melting time. Furthermore, it is observed that the stored exergy of nickel foam/PCM composite surpasses that of pure cetyl alcohol PCM. In TrT-TES systems, melting with nickel foam/PCM composite occurs 58.82% faster than in DuT-TES systems. The stored energy of TrT-TES employing nickel foam/PCM and nickel foam/PCM/MXene composite is 4.55% and 3.69% greater, respectively, than that of DuT-TES systems. DuT-TES with nickel foam/PCM/MXene also achieves a 44.86% higher system efficiency at 90 s than nickel foam/PCM. Notably, the melting process with nickel foam/PCM/MXene in TrT-TES occurs 60.26% faster than in DuT-TES. Consequently, TrT-TES systems employing nickel foam/PCM/MXene composite demonstrate superior potential for latent heat thermal storage compared to DuT-TES systems.

References

1.
Dukhan
,
W. A.
,
Dhaidan
,
N. S.
, and
Al-Hattab
,
T. A.
,
2020
, “
Experimental Investigation of the Horizontal Double Pipe Heat Exchanger Utilized PCM
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
671
(
1
), p.
012148
.
2.
Medrano
,
M.
,
Yilmaz
,
M. O.
,
Nogués
,
M.
,
Martorell
,
I.
,
Roca
,
J.
, and
Cabeza
,
L. F.
,
2009
, “
Experimental Evaluation of Commercial Heat Exchangers for Use as PCM Thermal Storage Systems
,”
Appl. Energy
,
86
(
10
), pp.
2047
2055
.
3.
Pakalka
,
S.
,
Valančius
,
K.
, and
Streckienė
,
G.
,
2020
, “
Experimental Comparison of the Operation of PCM-Based Copper Heat Exchangers With Different Configurations
,”
Appl. Therm. Eng.
,
172
, p.
115138
.
4.
Merlin
,
K.
,
Delaunay
,
D.
,
Soto
,
J.
, and
Traonvouez
,
L.
,
2016
, “
Heat Transfer Enhancement in Latent Heat Thermal Storage Systems: Comparative Study of Different Solutions and Thermal Contact Investigation Between the Exchanger and the PCM
,”
Appl. Energy
,
166
, pp.
107
116
.
5.
Gürel
,
B.
,
2020
, “
A Numerical Investigation of the Melting Heat Transfer Characteristics of PCMs in Different Plate Heat Exchanger Latent Heat Thermal Energy Storage Systems
,”
Int. J. Heat Mass Transfer
,
148
, p.
119117
.
6.
Dhaidan
,
N. S.
,
Hassan
,
A. F.
,
Al-Gaheeshi
,
A. M.
,
Al-Mousawi
,
F. N.
, and
Homod
,
R. Z.
,
2023
, “
Experimental Investigation of Thermal Characteristics of PCM in Finned Heat Exchangers
,”
J. Energy Storage
,
71
, p.
108162
.
7.
Elsanusi
,
O. S.
, and
Nsofor
,
E. C.
,
2021
, “
Melting of Multiple PCMs With Different Arrangements Inside a Heat Exchanger for Energy Storage
,”
Appl. Therm. Eng.
,
185
, p.
116046
.
8.
Al-Mudhafar
,
A. H.
,
Nowakowski
,
A. F.
, and
Nicolleau
,
F. C.
,
2021
, “
Enhancing the Thermal Performance of PCM in a Shell and Tube Latent Heat Energy Storage System by Utilizing Innovative Fins
,”
Energy Rep.
,
7
, pp.
120
126
.
9.
Chandran
,
K. N.
,
Jeong
,
Y. S.
,
Kim
,
H. G.
,
Min
,
J. K.
, and
Ha
,
M. Y.
,
2024
, “
Investigation of the Thermal Exchange Mechanism of PCM Melting Process in an LHTES With Elliptic Tube Configurations Inside a Cylindrical Shell
,”
J. Energy Storage
,
76
, p.
109838
.
10.
Sanchouli
,
M.
,
Payan
,
S.
,
Payan
,
A.
, and
Nada
,
S. A.
,
2022
, “
Investigation of the Enhancing Thermal Performance of Phase Change Material in a Duplex Tube Heat Exchanger Using Grid Annular Fins
,”
Case Stud. Therm. Eng.
,
34
, p.
101986
.
11.
Asgari
,
M.
,
Javidan
,
M.
,
Nozari
,
M.
,
Asgari
,
A.
, and
Ganji
,
D. D.
,
2021
, “
Simulation of Solidification Process of Phase Change Materials in a Heat Exchanger Using Branch-Shaped Fins
,”
Case Stud. Therm. Eng.
,
25
, p.
100835
.
12.
Eisapour
,
M.
,
Eisapour
,
A. H.
,
Shafaghat
,
A. H.
,
Mohammed
,
H. I.
,
Talebizadehsardari
,
P.
, and
Chen
,
Z.
,
2022
, “
Solidification of a Nano-Enhanced Phase Change Material (NEPCM) in a Double Elliptical Latent Heat Storage Unit With Wavy Inner Tubes
,”
Sol. Energy
,
241
, pp.
39
53
.
13.
Masoumi
,
H.
,
Haghighi khoshkhoo
,
R.
, and
Mirfendereski
,
S. M.
,
2022
, “
Experimental and Numerical Investigation of Melting/Solidification of Nano-Enhanced Phase Change Materials in Shell & Tube Thermal Energy Storage Systems
,”
J. Energy Storage
,
47
, pp.
103561
103581
.
14.
Fabrykiewicz
,
M.
, and
Cieśliński
,
J. T.
,
2024
, “
Experimental Investigation of Thermal Energy Storage in Shell-and-Multi-Tube Unit With Nano-Enhanced Phase Change Material
,”
Appl. Therm. Eng.
,
246
, p.
122881
.
15.
Yang
,
K.
,
Zhu
,
N.
,
Chang
,
C.
,
Yu
,
H.
, and
Yang
,
S.
,
2020
, “
Numerical Analysis of Phase-Change Material Melting in Triplex Tube Heat Exchanger
,”
Renewable Energy
,
145
, pp.
867
877
.
16.
Huang
,
X.
,
Hu
,
R.
,
Gao
,
X.
,
Yang
,
X.
, and
Li
,
M. J.
,
2024
, “
Study on Melting Process of Latent Heat Energy Storage System by Nano-Enhanced Phase Change Material Under Rotation Condition
,”
Appl. Therm. Eng.
,
247
, p.
123040
.
17.
Abdulateef
,
A. M.
,
Jaszczur
,
M.
,
Hassan
,
Q.
,
Anish
,
R.
,
Niyas
,
H.
,
Sopian
,
K.
, and
Abdulateef
,
J.
,
2021
, “
Enhancing the Melting of Phase Change Material Using a Fins–Nanoparticle Combination in a Triplex Tube Heat Exchanger
,”
J. Energy Storage
,
35
, p.
102227
.
18.
Kumar
,
A.
,
Verma
,
P.
, and
Varshney
,
L.
,
2022
, “
An Experimental and Numerical Study on Phase Change Material Melting Rate Enhancement for a Horizontal Semi-Circular Shell and Tube Thermal Energy Storage System
,”
J. Energy Storage
,
45
, p.
103734
.
19.
Fragnito
,
A.
,
Bianco
,
N.
,
Iasiello
,
M.
,
Mauro
,
G. M.
, and
Mongibello
,
L.
,
2022
, “
Experimental and Numerical Analysis of a Phase Change Material-Based Shell-and-Tube Heat Exchanger for Cold Thermal Energy Storage
,”
J. Energy Storage
,
56
, p.
105975
.
20.
Erdoğan
,
A.
, and
Çakmak
,
G.
,
2023
, “
Investigation of Numerical and Experimental Assessment of Melting Behavior of Phase Change Material in U-Tube Heat Exchanger
,”
Case Stud. Therm. Eng.
,
49
, p.
103206
.
21.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tian
,
Y.
,
2010
, “
Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded Within Phase Change Materials (PCMs)
,”
Sol. Energy
,
84
(
8
), pp.
1402
1412
.
22.
Zhou
,
D.
, and
Zhao
,
C. Y.
,
2011
, “
Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
970
977
.
23.
Li
,
W. Q.
,
Qu
,
Z. G.
,
He
,
Y.
, and
Tao
,
W.
,
2012
, “
Experimental and Numerical Studies on Melting Phase Change Heat Transfer in Open-Cell Metallic Foams Filled With Paraffin
,”
Appl. Therm. Eng.
,
37
, pp.
1
9
.
24.
Ebadi
,
S.
,
Tasnim
,
S. H.
,
Aliabadi
,
A. A.
, and
Mahmud
,
S.
,
2020
, “
An Experimental Investigation of the Charging Process of Thermal Energy Storage System Filled With PCM and Metal Wire Mesh
,”
Appl. Therm. Eng.
,
174
, p.
115266
.
25.
Zhang
,
P.
,
Meng
,
Z. N.
,
Zhu
,
H.
,
Wang
,
Y. L.
, and
Peng
,
S. P.
, “
Melting Heat Transfer Characteristics of a Composite Phase Change Material Fabricated by Paraffin and Metal Foam
,”
Appl. Energy
,
185
, pp.
1971
1983
.
26.
Liu
,
Z.
,
Yao
,
Y.
, and
Wu
,
H.
,
2013
, “
Numerical Modelling for Solid–Liquid Phase Change Phenomena in Porous Media: Shell-and-Tube Type Latent Heat Thermal Energy Storage
,”
Appl. Energy
,
112
, pp.
1222
1232
.
27.
Li
,
Y. Q.
,
He
,
Y. L.
,
Wang
,
Z. F.
,
Xu
,
C.
, and
Wang
,
W.
,
2012
, “
Exergy Analysis of Two-Phase Change Materials Storage System for Solar Thermal Power With Finite-Time Thermodynamics
,”
Renewable Energy
,
39
(
1
), pp.
447
454
.
28.
Hosseinzadeh
,
M.
,
Sardarabadi
,
M.
, and
Passandideh-Fard
,
M.
,
2018
, “
Energy and Exergy Analysis of Nanofluid Based Photovoltaic Thermal System Integrated With Phase Change Material
,”
Energy
,
147
, pp.
636
647
.
29.
Rahimi
,
M.
,
Ardahaie
,
S. S.
,
Hosseini
,
M. J.
, and
Gorzin
,
M.
,
2020
, “
Energy and Exergy Analysis of an Experimentally Examined Latent Heat Thermal Energy Storage System
,”
Renewable Energy
,
147
, pp.
1845
1860
.
30.
Fadl
,
M.
, and
Eames
,
P. C.
,
2019
, “
An Experimental Investigation of the Heat Transfer and Energy Storage Characteristics of a Compact Latent Heat Thermal Energy Storage System for Domestic Hot Water Applications
,”
Energy
,
188
, p.
116083
.
31.
Seddegh
,
S.
,
Wang
,
X.
, and
Henderson
,
A. D.
,
2016
, “
A Comparative Study of Thermal Behaviour of a Horizontal and Vertical Shell-and-Tube Energy Storage Using Phase Change Materials
,”
Appl. Therm. Eng.
,
93
, pp.
348
358
.
32.
Sriram
,
M.
, and
Bhattacharya
,
A.
,
2022
, “
Analysis and Optimization of Triple Tube Phase Change Material-Based Energy Storage System
,”
J. Energy Storage
,
36
, p.
102350
.
You do not currently have access to this content.