Abstract

Parabolic trough collector (PTC) is prospective for energy storage compatibility, and its thermal performance is limited by weather dependence. Evaluating the performance of the parabolic trough collector is crucial. In this study, the snail shell porous biological material acts as an energy storage material integrated with the receiver. These porous materials could store heat and supply to enhance thermal performance by supplying heat energy to a working fluid during reduced radiation availability. Hence, the experimentation is conducted under two dissimilar flowrate conditions, such as 150 and 300 liters per hour (LPH), with and without the porous material receiver. The findings of this research demonstrate that receivers with porous material show superior thermal performance compared to those without porous material. The peak average outlet water's temperature, heat absorption, heat transfer coefficient (HTC), and thermal and exergy efficiencies are about 68.7 °C, 5312.3 W, 357.9 W/m2 K, 70.6%, and 49.5%, respectively, at 150 LPH. However, the snail shell porous material enhances heat absorption efficiency by storing and releasing more heat, thereby improving the PTC's overall performance.

References

1.
Darbari
,
B.
,
Derikvand
,
M.
, and
Shabani
,
B.
,
2023
, “
Thermal Performance Improvement of a LS-2 Parabolic Trough Solar Collector Using Porous Disks
,”
Appl. Therm. Eng.
,
228
, p.
120546
.
2.
Mohanavel
,
V.
,
Logesh
,
K.
,
Sharma
,
P.
,
Hossa
,
I.
,
Soudagar
,
M. E. M.
,
Alharbi
,
S. A.
,
Obaid
,
S. A.
, and
Ramachandramurthy
,
V. K.
,
2024
, “
Silicon Porous Disc Featured Parabolic Trough Collector Functioned With Paraffin: Thermal Performance Study
,”
Appl. Therm. Eng.
,
257
(Part B), p.
124392
.
3.
Lei
,
D.
,
Wang
,
Z.
, and
Li
,
J.
,
2010
, “
The Analysis of Residual Stress in Glass-to-Metal Seals for Solar Receiver Tube
,”
Mater. Des.
,
31
(
4
), pp.
1813
1820
.
4.
Selvam
,
L.
,
Hossain
,
I.
,
Aruna
,
M.
,
Karthigairajan
,
M.
,
Prabagaran
,
S.
,
Mohanavel
,
V.
, and
Kalam
,
M. A.
,
2024
, “
Enhancement and Characteristics Study of Parabolic Trough Solar Collector by Using Magnesium Oxide Coating on Solar Tubes
,”
J. Therm. Anal. Calorim.
,
149
, pp.
12001
12010
.
5.
San Vicente
,
G.
,
Bayón
,
R.
,
Germán
,
N.
, and
Morales
,
A.
,
2009
, “
Long-Term Durability of Sol-Gel Porous Coatings for Solar Glass Covers
,”
Thin Solid Films
,
517
(
10
), pp.
3157
3160
.
6.
Agrafiotis
,
C. C.
,
Mavroidis
,
I.
,
Konstandopoulos
,
A. G.
,
Hoffschmidt
,
B.
,
Stobbe
,
P.
,
Romero
,
M.
, and
Fernandez-Quero
,
V.
,
2007
, “
Evaluation of Porous Silicon Carbide Monolithic Honeycombs as Volumetric Receivers/Collectors of Concentrated Solar Radiation
,”
Sol. Energy Mater. Sol. Cells
,
91
(
6
), pp.
474
488
.
7.
Omidi
,
B.
,
Rahbar
,
N.
,
Kargarsharifabad
,
H.
, and
Moziraji
,
Z. P.
,
2023
, “
Performance Evaluation of a Solar Desalination-Hot Water System Using Heat Pipe Vacuum Tube Parabolic Trough Solar Collector—An Experimental Study With Taguchi Analysis
,”
Energy Convers. Manage.
,
292
, p.
117347
.
8.
Ravi Kumar
,
K.
, and
Reddy
,
K. S.
,
2009
, “
Thermal Analysis of Solar Parabolic Trough With Porous Disc Receiver
,”
Appl. Energy
,
86
(
9
), pp.
1804
1812
.
9.
Zheng
,
Z.
,
Xu
,
Y.
, and
He
,
Y.
,
2016
, “
Thermal Analysis of a Solar Parabolic Trough Receiver Tube With Porous Insert Optimized by Coupling Genetic Algorithm and CFD
,”
Sci. China Technol. Sci.
,
59
, pp.
1475
1485
.
10.
Xiong
,
Q.
,
Altnji
,
S.
,
Tayebi
,
T.
,
Izadi
,
M.
,
Hajjar
,
A.
,
Sundén
,
B.
,
Larry
,
K. B.
, and
Li
,
A.
,
2021
, “
Comprehensive Review on the Application of Hybrid Nanofluids in Solar Energy Collectors
,”
Sustain. Energy Technol. Assess.
,
47
, p.
101341
.
11.
Wang
,
F.
,
Shuai
,
Y.
,
Tan
,
H.
, and
Yu
,
C.
,
2013
, “
Thermal Performance Analysis of Porous Media Receiver With Concentrated Solar Irradiation
,”
Int. J. Heat Mass Transfer
,
62
, pp.
247
254
.
12.
Ahmad Soltani
,
L.
,
Shivanian
,
E.
, and
Ezzati
,
R.
,
2016
, “
Convection–Radiation Heat Transfer in Solar Heat Exchangers Filled With a Porous Medium: Exact and Shooting Homotopy Analysis Solution
,”
Appl. Therm. Eng.
,
103
, pp.
537
542
.
13.
Hatami
,
M.
,
Geng
,
J.
, and
Jing
,
D.
,
2018
, “
Enhanced Efficiency in Concentrated Parabolic Solar Collector (CPSC) With a Porous Absorber Tube Filled With Metal Nanoparticle Suspension
,”
Green Energy Environ.
,
3
(
2
), pp.
129
137
.
14.
Hossain
,
I.
,
Mohananvel
,
V.
,
Soundagar
,
M. E. M.
,
Alharbi
,
S. A.
, and
Obaid
,
S. A.
,
2024
, “
Flat Plate Solar Collector Activated With Alumina-Silicon Dioxide-Copper Oxide Hybrid Nanofluid: Thermal Performance Study
,”
Appl. Therm. Eng.
,
257
(Part C), p.
124496
.
15.
Siavashi
,
M.
,
Bahrami
,
H. R. T.
, and
Saffari
,
H.
,
2015
, “
Numerical Investigation of Flow Characteristics, Heat Transfer and Entropy Generation of Nanofluid Flow Inside an Annular Pipe Partially or Completely Filled With Porous Media Using Two-Phase Mixture Model
,”
Energy
,
93
(
2
), pp.
2451
2466
.
16.
Sheikholeslami
,
M.
, and
Zeeshan
,
A.
,
2017
, “
RETRACTED: Mesoscopic Simulation of CuOH2O Nanofluid in a Porous Enclosure With an Elliptic Heat Source
,”
Int. J. Hydrogen
,
42
(
22
), pp.
15393
15402
.
17.
Toosi
,
M. H.
, and
Siavashi
,
M.
,
2017
, “
Two-Phase Mixture Numerical Simulation of Natural Convection of Nanofluid Flow in a Cavity Partially Filled With Porous Media to Enhance Heat Transfer
,”
J. Mol. Liq.
,
238
, pp.
553
569
.
18.
Ayebi
,
R.
,
Akbarzadeh
,
S.
, and
Valipour
,
M. S.
,
2019
, “
Numerical Investigation of Efficiency Enhancement in a Direct Absorption Parabolic Trough Collector Occupied by a Porous Medium and Saturated by a Nanofluid
,”
Sustain. Energy
,
38
, pp.
727
740
.
19.
Ghasemi
,
S. E.
,
Ranjbar
,
A. A.
, and
Ramiar
,
A.
,
2013
, “
Three-Dimensional Numerical Analysis of Heat Transfer Characteristics of Solar Parabolic Collector With Two Segmental Rings
,”
Int. J. Math. Comput. Sci.
,
7
, pp.
89
100
.
20.
Ravi Kumar
,
K.
, and
Reddy
,
K. S.
,
2012
, “
Effect of Porous Disc Receiver Configurations on Performance of Solar Parabolic Trough Concentrator
,”
Heat Mass Transfer
,
48
, pp.
555
571
.
21.
Rahmati
,
A. R.
, and
Derikvand
,
M.
,
2020
, “
Numerical Study of Non-Newtonian Nanofluid in a Micro-channel With Adding Slip Velocity and Porous Blocks
,”
Int. Commun. Heat Mass Transfer
,
118
, p.
104843
.
22.
Vengadesan
,
E.
,
Rumaney
,
A. R. I.
,
Mitra
,
R.
,
Harichandan
,
S.
, and
Senthil
,
R.
,
2022
, “
Heat Transfer Enhancement of a Parabolic Trough Solar Collector Using a Semicircular Multitube Absorber
,”
Renew. Energy
,
196
, pp.
111
124
.
23.
Lizama-Tzec
,
F. I.
,
Herrera-Zamora
,
D. M.
,
Arés-Muzio
,
O.
,
Gómez-Espinoza
,
V. H.
,
Santos-González
,
I.
,
Cetina-Dorantes
,
M.
,
Vega-Poot
,
A. G.
,
García-Valladares
,
O.
, and
Oskam
,
G.
,
2019
, “
Electrodeposition of Selective Coatings Based on Black Nickel for Flat-Plate Solar Water Heaters
,”
Sol. Energy
,
194
, pp.
302
310
.
24.
Lu
,
Y.
, and
Chen
,
Z.
,
2019
, “
Experimental Study on Thermal Performance of Solar Absorber With CuO Nanostructure Selective Coating
,”
Energy Procedia
,
158
, pp.
1303
1310
.
25.
Vishnu
,
S. K.
, and
Senthil
,
R.
,
2023
, “
Experimental Performance Evaluation of a Solar Parabolic Dish Collector Using Spiral Flow Path Receiver
,”
Appl. Therm. Eng.
,
231
, p.
120979
.
26.
El-Mahallawi
,
I. S.
,
Abdel-Rehim
,
A. A.
,
Khattab
,
N.
,
Rafat
,
N. H.
, and
Badr
,
H.
,
2018
, “
Effect of Nano-graphite Dispersion on the Thermal Solar Selective Absorbance of Polymeric-Based Coating Material
,”
Energy Technol.
,
124
, pp.
523
533
.
27.
Syed Noman
,
A. E.
,
Kabeel
,
A.
, and
Manokar
,
M.
,
2024
, “
Performance Improvement of Tubular Solar Still With Pistachios Shell Materials: Energy, Exergy, Economic, and Sustainability Analysis
,”
J. Energy Storage
,
78
, p.
110132
.
28.
Lamrani
,
B.
,
Kuznik
,
F.
, and
Draoui
,
A.
,
2020
, “
Thermal Performance of a Coupled Solar Parabolic Trough Collector Latent Heat Storage Unit for Solar Water Heating in Large Buildings
,”
Renew. Energy
,
162
, pp.
411
426
.
29.
Dhivagar
,
R.
,
Shoeibi
,
S.
,
Parsa
,
S. M.
,
Hoseinzadeh
,
S.
,
Kargarsharifabad
,
H.
, and
Khiadani
,
M.
,
2023
, “
Performance Evaluation of Solar Still Using Energy Storage Biomaterial With Porous Surface: An Experimental Study and Environmental Analysis
,”
Renew. Energy
,
206
, pp.
879
889
.
30.
Singh
,
A.
,
2012
, “
Hydroxyapatite, a Biomaterial: Its Chemical Synthesis, Characterization and Study of Biocompatibility Prepared From Shell of Garden Snail
,”
Bull. Mater. Sci.
,
35
(
6
), pp.
1031
1038
.
31.
Babapour
,
M.
,
Akbarzadeh
,
S.
, and
Valipour
,
M. S.
,
2021
, “
An Experimental Investigation on the Simultaneous Effects of Helically Corrugated Receiver and Nanofluids in a Parabolic Trough Collector
,”
J. Taiwan Inst. Chem. Eng.
,
128
, pp.
261
275
.
32.
Li
,
Q.
,
Zhang
,
Y.
,
Wen
,
Z. X.
, and
Qiu
,
Y.
,
2020
, “
An Evacuated Receiver Partially Insulated by a Solar Transparent Aerogel for Parabolic Trough Collector
,”
Energy Convers. Manage.
,
214
, p.
112911
.
33.
Mohamad
,
K.
, and
Ferrer
,
P.
,
2020
, “
Thermal Performance and Design Parameters Investigation of a Novel Cavity Receiver Unit for Parabolic Trough Concentrator
,”
Renew. Energy
,
168
, pp.
692
704
.
34.
Wang
,
Q.
,
Yang
,
H.
,
Zhong
,
S.
,
Huang
,
Y.
,
Hu
,
M.
, and
Cao
,
J.
,
2020
, “
Comprehensive Experimental Testing and Analysis on Parabolic Trough Solar Receiver Integrated With Radiation Shield
,”
Appl. Energy
,
268
, p.
115004
.
35.
El-Bakry
,
M. M.
,
Kassem
,
M. A.
, and
Hassan
,
M. A.
,
2021
, “
Passive Performance Enhancement of Parabolic Trough Solar Concentrators Using Internal Radiation Heat Shields
,”
Renew. Energy
,
165
, pp.
52
66
.
36.
Syamimi
,
N. F.
,
Islam
,
M. R.
,
Sumadani
,
M. G.
, and
Rashidi
,
N. M.
,
2020
, “
Mechanical and Thermal Properties of Snail Shell Particles-Reinforced Bisphenol-A Bio-composite
,”
Polym. Bull.
,
77
, pp.
2573
2589
.
37.
Shahadabadi
,
R. S.
,
Mortazavi
,
A.
,
Lotfi
,
P.
,
Shakib
,
S. E.
, and
Ghafurian
,
M. M.
,
2023
, “
Boosting Stepped Solar Still System Efficiency With Affordable Natural Energy Absorbers
,”
Case Stud. Therm. Eng.
,
52
, p.
103666
.
38.
Arunkumar
,
T.
,
Wilson
,
H. M.
, and
Lee
,
S. J.
,
2023
, “
Waste Are in the Limelight: Cost-Effective Waste Materials for Sustainable Solar Desalination
,”
Clean Technol. Environ. Policy
,
25
, pp.
2805
2830
.
39.
Savazzi
,
E.
, and
Sasaki
,
T.
,
2013
, “
Observations on Land Snail Shells in Near-Ultraviolet, Visible and Near-Infrared Radiation
,”
J. Molluscan Stud.
,
79
(
2
), pp.
95
111
.
40.
Wu
,
W.
,
Zhou
,
Y.
,
Xu
,
R.
, and
Yang
,
X.
,
2019
, “
Snail Shell-Shaped Chiral Substituted Helical Polyacetylene: Preparation, Characterization and Infrared Emissivity Performance
,”
J. Mater. Sci.
,
54
, pp.
14243
14254
.
41.
Sakhaei
,
S. A.
, and
Valipour
,
M. S.
,
2020
, “
Investigation on the Effect of Different Coated Absorber Plates on the Thermal Efficiency of the Flat-Plate Solar Collector
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1597
1610
.
42.
Kbarzadeh
,
S.
, and
Valipour
,
M. S.
,
2021
, “
The Thermo-hydraulic Performance of a Parabolic Trough Collector With Helically Corrugated Tube
,”
Sustain. Energy Technol. Assess.
,
44
, p.
101013
.
43.
Mohankumar
,
S.
,
Padmavathi
,
K. R.
, and
Prabagaran
,
S.
,
2024
, “
Cupric Oxide Nanofluid Influenced Parabolic Trough Solar Collector: Thermal Performance Evaluation
,”
Energy Sources Part A
,
46
(
1
), pp.
811
2827
.
44.
Abdullatif
,
Y. M.
,
Okonkwo
,
E. C.
, and
Al-Ansari
,
T.
,
2021
, “
Thermal Performance Optimization of a Parabolic Trough Collector Operating With Various Working Fluids Using Copper Nanoparticles
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051011
.
45.
Kocak
,
E.
,
Turkoglu
,
H.
, and
Ayli
,
E.
,
2023
, “
Performance Optimization of Finned Surfaces Based on the Experimental and Numerical Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
9
), p.
091002
.
46.
Gonzalez-mora
,
E.
, and
Duran-Garcia
,
M. D.
,
2024
, “
Alternative Approach for Thermo-hydraulic Modeling of Direct Steam Generator in Parabolic Trough Solar Collectors
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
5
), p.
051005
.
47.
Sathish
,
T.
,
2020
, “
Experimental Investigation on Degradation of Heat Transfer Properties of a Black Chromium-Coated Aluminium Surface Solar Collector Tube
,”
Int. J. Ambient Energy
,
41
(
7
), pp.
754
758
.
48.
Palanikumar
,
P.
,
Seikh
,
A. H.
, and
Kalam
,
M. A.
,
2024
, “
Influences of Black Nickel Coating Thickness on Thermal Behaviour of Flat Plate Solar Collector: Performance Evaluation
,”
J. Therm. Anal. Calorim.
,
149
, pp.
6687
6697
.
49.
Bhore
,
C. V.
,
Andhare
,
A. B.
,
Padmod
,
P. M.
,
Loyte
,
A.
,
Vincent
,
J. S.
,
Deverajan
,
Y.
, and
Vellaiyan
,
S.
,
2023
, “
Experimental Investigation on Minimizing Degradation of Solar Energy Generation for Photovoltaic Module by Modified Damping Systems
,”
Solar Energy
,
250
, pp.
194
208
.
50.
Bhore
,
C. V.
,
Padole
,
P. M.
,
Loyte
,
A.
,
Yuvarajan
,
D.
,
Thandavamoorthy
,
R.
, and
Ravikumar
,
J.
,
2023
, “
Assessment of Metro-induced Vibrations on Photo-voltaic Modules for Their Solar Energy Degradation Potential
,”
Sol. Energy
,
255
, pp.
257
273
.
You do not currently have access to this content.