Abstract

Steady, periodically fully developed forced convection through three-dimensional perforated sinusoidal wavy fin cores with uniform wall temperature is computationally investigated. Constant property airflow (Pr ≈ 0.71) with a Reynolds number range of 50–4000 covering both laminar and turbulent regimes is considered. The computational solutions, validated with in-house experimental data for continuous and perforated wavy fin coupons, highlight the effects of perforation locations (characterized by phase angle β), fin porosity, inter-fin spacing, and corrugation amplitude on the thermal-hydraulic performance of the fins. The local temperature, velocity, and pressure variations, and the corresponding local heat transfer coefficient and friction drag (or the Colburn factor j and Fanning friction factor f) are reported. Fluid flows from the adjacent channels through wavy surface perforations induce secondary flow and interrupt the boundary layer leading to an increase in f and j in both laminar and turbulent regimes. Decrease in corrugation amplitude and inter-fin spacing leads to the suppression of recirculation zones, whereas higher porosity yields increased f and j. Perforated fins nevertheless require less surface area to fulfill a specified heat load condition with a fixed pressure drop as compared to the continuous wavy fins. Furthermore, the perforation location has a noticeable effect on the local heat transfer and flow dynamics and, except for Re < ∼200, wavy fins with perforations at relatively higher phase angle β perform better.

References

1.
Manglik
,
R. M.
,
2003
, “Heat Transfer Enhancement,”
Heat Transfer Handbook
,
A.
Bejan
, and
A. D.
Kraus
, eds.,
Wiley
,
New York
, Chapter 14, pp.
1029
1130
.
2.
Bergles
,
A. E.
, and
Manglik
,
R. M.
,
2013
, “
Current Progress and Developments in Enhanced Heat and Mass Transfer
,”
J. Enhanced Heat Transfer
,
20
(
1
), pp.
1
15
.
3.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
Hoboken, NJ
.
4.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
5.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
2004
, “
Enhanced Heat and Mass Transfer in the New Millennium: A Review of the 2001 Literature
,”
J. Enhanced Heat Transfer
,
11
(
2
), pp.
87
118
.
6.
Manglik
,
R. M.
,
2017
, “Heat Transfer Enhancement,”
CRC Handbook of Thermal Engineering
, 2nd ed.,
R. P.
Chhabra
, ed.,
CRC Press
,
Boca Raton, FL
, Chapter 4.16, pp.
933
952
.
7.
Shah
,
R. K.
,
1983
, “Compact Heat Exchanger Surface Selection, Optimization, and Computer Aided Thermal Design,”
Low Reynolds Number Flow Heat Exchangers
,
S.
Kakaç
,
R. K.
Shah
, and
A. E.
Bergles
, eds.,
Hemisphere Publishing
,
New York
, pp.
845
874
.
8.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.
9.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2019
, “
Three-Dimensional Computations for Forced Convection of Air in Offset-Strip Fin Channels: Effects of Fin Offset Length
,”
ASHRAE Trans.
,
125
(
2
), pp.
172
180
.
10.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
,
2005
, “
Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1439
1449
.
11.
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2018
, “
Computational Modeling of Low Reynolds Number Air Flows in Wavy-Plate-Fin Channels: Contribution of Pressure Drag on Performance
,”
Proceedings of the 16th International Heat Transfer Conference
,
Beijing, China
, Paper Number IHTC16-24221.
12.
Manglik
,
R. M.
,
2017
, “Enhancement of Convective Heat Transfer,”
Handbook of Thermal Science and Engineering
,
F. A.
Kulacki
, ed.,
Springer
,
New York
, pp.
447
477
.
13.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2022
, “
Role of Three-Dimensional Swirl in Forced Convection Heat Transfer Enhancement in Wavy-Plate-Fin Channels
,”
ASME J. Heat Transfer
,
144
(
5
), p.
052001
.
14.
Masao
,
F.
,
Yu
,
S.
, and
Goro
,
Y.
,
1988
, “
Heat Transfer and Pressure Drop of Perforated Surface Heat Exchanger With Passage Enlargement and Contraction
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
135
142
.
15.
Huzayyin
,
O.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2010
, “
Low Reynolds Number Air-Flow Heat Transfer in Trapezoidally Corrugated Perforated Plate-Fin Ducts
,”
ASHRAE Trans.
,
116
(
2
), pp.
339
346
.
16.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2023
, “
Experimental and Computational Study of Enhanced Forced Convection Heat Transfer in Novel Slotted Wavy-Plate-Fin Channels
,”
ASME J. Heat Mass Transfer
,
145
(
4
), p.
041801
.
17.
Das
,
R.
, and
Kundu
,
B.
,
2021
, “
Prediction of Heat-Generation and Electromagnetic Parameters From Temperature Response in Porous Fins
,”
J. Thermophys. Heat Transfer
,
35
(
4
), pp.
761
774
.
18.
Das
,
R.
, and
Kundu
,
B.
,
2021
, “
An Estimate of Heat Generation, Electric, and Magnetic Parameters From Temperature Fields in Porous Fins for Electronic Cooling Systems
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
11
(
8
), pp.
1249
1258
.
19.
Nishimura
,
T.
,
Kajimoto
,
Y.
, and
Kawamura
,
Y.
,
1986
, “
Mass Transfer Enhancement in Channels With a Wavy Wall
,”
J. Chem. Eng. Jpn.
,
19
(
2
), pp.
142
144
.
20.
Rush
,
T. A.
,
Newell
,
T. A.
, and
Jacobi
,
A. M.
,
1999
, “
An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1541
1553
.
21.
Ismail
,
L. S.
, and
Velraj
,
R.
,
2009
, “
Studies on Fanning Friction (f) and Colburn (j) Factors of Offset and Wavy Fins Compact Plate Fin Heat Exchanger—A CFD Approach
,”
Numer. Heat Transfer Part A: Appl.
,
56
(
12
), pp.
987
1005
.
22.
Dong
,
J.
,
Chen
,
J.
,
Zhang
,
W.
, and
Hu
,
J.
,
2010
, “
Experimental and Numerical Investigation of Thermal Hydraulic Performance in Wavy Fin-and-Flat Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1377
1386
.
23.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2021
, “
Characterization and Scaling of Forced Convective Swirl in Sinusoidal Wavy-Plate-Fin Cores of Compact Heat Exchangers
,”
ASME J. Heat Transfer
,
143
(
2
), p.
021901
.
24.
Vyas
,
S.
,
Manglik
,
R.
, and
Jog
,
M. A.
,
2010
, “
Visualization and Characterization of a Lateral Swirl Flow Structure in Sinusoidal Corrugated-Plate Channels
,”
J. Flow Vis. Image Proc.
,
17
(
4
), pp.
281
296
.
25.
Vajravelu
,
K.
,
1980
, “
Fluid Flow and Heat Transfer in Horizontal Wavy Channels
,”
Acta Mech.
,
35
(
3
), pp.
245
258
.
26.
Focke
,
W. W.
, and
Knibbe
,
P. G.
,
1986
, “
Flow Visualization in Parallel-Plate Ducts With Corrugated Walls
,”
J. Fluid Mech.
,
165
(
1
), p.
73
.
27.
Ektesabi
,
M.
,
Sako
,
M.
, and
Chiba
,
T.
,
1987
, “
Fluid Flow and Heat Transfer in Wavy Sinusoidal Channels (1st Report, Numerical Analysis of Two-Dimensional Laminar Flow Field)
,”
Nippon Kikai Gakkai Ronbunshu, Trans. JSME
,
53
(
487
), pp.
722
730
.
28.
Garg
,
V.
, and
Maji
,
P.
,
1988
, “
Flow and Heat Transfer in a Sinusoidally Curved Channel
,”
Int. J. Eng. Fluid Mech.
,
1
(
3
), pp.
293
319
.
29.
Nishimura
,
T.
,
Yano
,
K.
,
Yoshino
,
T.
, and
Kawamura
,
Y.
,
1990
, “
Occurrence and Structure of Taylor–Goertler Vortices Induced in Two-Dimensional Wavy Channels for Steady Flow
,”
J. Chem. Eng. Jpn.
,
23
(
6
), pp.
697
703
.
30.
Gschwind
,
P.
,
Regele
,
A.
, and
Kottke
,
V.
,
1995
, “
Sinusoidal Wavy Channels With Taylor-Goertler Vortices
,”
Exp. Therm. Fluid Sci.
,
11
(
3
), pp.
270
275
.
31.
Metwally
,
H.
, and
Manglik
,
R. M.
,
2004
, “
Enhanced Heat Transfer Due to Curvature-Induced Lateral Vortices in Laminar Flows in Sinusoidal Corrugated-Plate Channels
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2283
2292
.
32.
Junqi
,
D.
,
Yi
,
Z.
,
Gengtian
,
L.
, and
Weiwu
,
X.
,
2013
, “
Experimental Study of Wavy Fin Aluminum Plate Fin Heat Exchanger
,”
Exp. Heat Transfer
,
26
(
4
), pp.
384
396
.
33.
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2020
, “
Characterizing, Correlating, and Evaluating Swirl Flow and Heat Transfer in Wavy Plate-Fin Channels With Novel Enhancement Attributes
,”
Thermal-Fluids & Thermal Processing Laboratory, University of Cincinnati
,
Cincinnati, OH
, Report No. TFTPL-27.
34.
Nilpueng
,
K.
,
Ahn
,
H. S.
,
Jerng
,
D.-W.
, and
Wongwises
,
S.
,
2019
, “
Heat Transfer and Flow Characteristics of Sinusoidal Wavy Plate Fin Heat Sink With and Without Crosscut Flow Control
,”
Int. J. Heat Mass Transfer
,
137
, pp.
565
572
.
35.
Kanargi
,
O. B.
,
Lee
,
P. S.
, and
Yap
,
C.
,
2017
, “
A Numerical and Experimental Investigation of Heat Transfer and Fluid Flow Characteristics of a Cross-connected Alternating Converging–Diverging Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
106
, pp.
449
464
.
36.
Wu
,
G.
,
Yu
,
B.
,
Ren
,
T.
, and
Ding
,
G.
,
2020
, “
Modeling and Experimental Investigation on Comprehensive Performance of Perforated Wavy Fins for Heat Pump Type Air Conditioners at Frosting and Non-frosting Conditions
,”
Energy Build.
,
225
, p.
110342
.
37.
Wang
,
X.
, and
Lin
,
F.
,
2021
, “
Numerical Analysis on Heat Transfer and Flow Resistance Performances of a Heat Exchanger With Novel Perforated Wavy Fins
,”
Therm. Sci.
,
26
(
4 Part B
), pp.
255
255
.
38.
Robinson Fin Machines
,
2024
, “
Custom Folded Fins for Heat Transfer Applications in Various Industries
,” Robinson Fin Machines Inc., Kenton, OH, https://www.robfin.com/heat-transfer-fins/, Accessed May 22, 2024.
39.
Manglik
,
R. M.
,
Huzayyin
,
O. A.
, and
Jog
,
M. A.
,
2011
, “
Fin Effects in Flow Channels of Plate-Fin Compact Heat Exchanger Cores
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041004
.
40.
Bergels
,
A. E.
,
2005
, “
People and Personalities
,”
Heat Transfer Eng.
,
26
(
2
), pp.
99
100
.
41.
Sathe
,
S.
,
2023
, “
Three-Dimensional Computational Modeling of Forced Convection in Perforated and Slotted Wavy Fins
,”
M.S. thesis
,
University of Cincinnati
,
Cincinnati, OH
.
42.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
43.
ansys fluent 2021 R2
,
2021
,
Theory Guide 2021R2
,
Ansys Fluent
,
Canonsburg, PA
.
44.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
180
186
.
45.
Kreith
,
F.
, and
Manglik
,
R. M.
,
2018
,
Principles of Heat Transfer
, 8th ed.,
Cengage Learning
,
Boston, MA
.
46.
Kaushik
,
M.
,
2023
, “
Experimental Investigation of Perforation Effects on Plain and Wavy Plate-Fin Performance for Enhancing Forced Convection Heat Transfer
,”
M.S. thesis
,
University of Cincinnati
,
Cincinnati, OH
.
You do not currently have access to this content.