Graphical Abstract Figure

3D representation of the ventilation space

Graphical Abstract Figure

3D representation of the ventilation space

Close modal

Abstract

The effect of airflow characteristics within a slot-ventilated enclosure is carried out numerically to optimize the heat and contaminants’ removal rate where cold air is injected via an inlet port. The contaminated air is expelled by the chimney outlet port positioned along the left side of the top wall. Based on the structure dynamics, the flow governing equation is dealt with the Navier–Stokes equations coupled with the energy equation, where the maximum cooling efficiency is evaluated. A finite volume-based semi-implicit method for pressure-linked equations (SIMPLEs) method is utilized to deal with the nonlinear coupled partial differential equations to evaluate the flow variation with changing various physical parameters. Different thermosolutal block orientations are considered to investigate the effective interpretation of heat and mass transfer in a natural chamber. The effects of the inclination angle of the chimney, Richardson and Reynolds numbers on the average heat and mass transfer rate, average temperature, average Bejan number, and performance evaluation criterion (PEC) inside the system are evaluated. Boundary layer analysis is performed to examine the transient behavior of the boundary layer flow dominated by natural convection near the wall heater on the enclosure’s left wall and results are found to agree with our numerical results.

References

1.
Nag
,
P. K.
, and
Nag
,
P. K.
,
2019
, “Sick Building Syndrome and Other Building-Related Illnesses,”
Office Buildings: Health, Safety and Environment
,
A.
Chakrabarti
, ed.,
Springer Singapore
,
Singapore
, pp.
53
103
.
2.
Deng
,
Q. H.
,
Zhou
,
J.
,
Mei
,
C.
, and
Shen
,
Y. M.
,
2004
, “
Fluid, Heat and Contaminant Transport Structures of Laminar Double-Diffusive Mixed Convection in a Two-Dimensional Ventilated Enclosure
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5257
5269
.
3.
Zender-Świercz
,
E.
,
2020
, “
Improvement of Indoor Air Quality by Way of Using Decentralised Ventilation
,”
J. Build. Eng.
,
32
(
4
), p.
101663
.
4.
Singh
,
J.
,
1996
, “
Impact of Indoor Air Pollution on Health, Comfort and Productivity of the Occupants
,”
Aerobiologia
,
12
(
1
), pp.
121
127
.
5.
Lotfabadi
,
P.
,
2015
, “
Analyzing Passive Solar Strategies in the Case of High-Rise Building
,”
Renew. Sustain. Energy Rev.
,
52
, pp.
1340
1353
.
6.
Salari
,
A.
,
Ashouri
,
M.
, and
Hakkaki-Fard
,
A.
,
2020
, “
On the Performance of Inclined Rooftop Solar Chimney Integrated With Photovoltaic Module and Phase Change Material: A Numerical Study
,”
Sol. Energy
,
211
(
7
), pp.
1159
1169
.
7.
Li
,
H.
,
Yu
,
Y.
,
Niu
,
F.
,
Shafik
,
M.
, and
Chen
,
B.
,
2014
, “
Performance of a Coupled Cooling System With Earth-to-Air Heat Exchanger and Solar Chimney
,”
Renew. Energy
,
62
, pp.
468
477
.
8.
Shi
,
L.
,
Zhang
,
G.
,
Yang
,
W.
,
Huang
,
D.
,
Cheng
,
X.
, and
Setunge
,
S.
,
2018
, “
Determining the Influencing Factors on the Performance of Solar Chimney in Buildings
,”
Renew. Sustain. Energy Rev.
,
88
, pp.
223
238
.
9.
Xu
,
F.
,
Xu
,
S.
, and
Xiong
,
Q.
,
2022
, “
Computational Investigation of Natural Ventilation Induced by Solar Chimneys: Significance of Building Space on Thermofluid Behavior
,”
Phys. Fluids
,
34
(
11
), p.
117101
.
10.
Khedari
,
J.
,
Kaewruang
,
S.
,
Pratinthong
,
N.
, and
Hirunlabh
,
J.
,
1999
, “
Natural Ventilation of Houses by a Trombe Wall Under the Climatic Conditions in Thailand
,”
Int. J. Ambient Energy
,
20
(
2
), pp.
85
94
.
11.
Zrikem
,
Z.
, and
Bilgen
,
E.
,
1987
, “
Ventilation of Dwellings Using Solar Chimneys in North African Climate
,”
Solar Wind Technol.
,
4
(
3
), pp.
313
317
.
12.
Mokheimer
,
E. M.
,
Shakeel
,
M. R.
, and
Al-Sadah
,
J.
,
2017
, “
A Novel Design of Solar Chimney for Cooling Load Reduction and Other Applications in Buildings
,”
Energy Build.
,
153
, pp.
219
230
.
13.
Hsu
,
T. H.
, and
SG
,
W. A.
,
2000
, “
Mixed Convection in a Rectangular Enclosure With Discrete Heat Sources
,”
Numer. Heat Transfer: Part A: Appl.
,
38
(
6
), pp.
627
652
.
14.
Karimi
,
F.
,
Xu
,
H.
,
Wang
,
Z.
,
Yang
,
M.
, and
Zhang
,
Y.
,
2016
, “
Numerical Simulation of Steady Mixed Convection Around Two Heated Circular Cylinders in a Square Enclosure
,”
Heat Transfer Eng.
,
37
(
1
), pp.
64
75
.
15.
Chatterjee
,
D.
, and
Mishra
,
R.
,
2018
, “
Numerical Investigation of Transient Magnetohydrodynamic Mixed Convection in a Ventilated Cavity Containing Two Heated Circular Cylinders
,”
Heat Transfer Eng.
,
39
(
12
), pp.
1052
1066
.
16.
Bensouici
,
M.
, and
Bessaih
,
R.
,
2010
, “
Mixed Convection in a Vertical Channel With Discrete Heat Sources Using a Porous Matrix
,”
Numer. Heat Transfer Part A: Appl.
,
58
(
7
), pp.
581
604
.
17.
Ali
,
O. M.
, and
Alomar
,
O. R.
,
2021
, “
Mixed Convection Heat Transfer From Two Aligned Horizontal Heated Cylinders in a Vented Square Enclosure
,”
Therm. Sci. Eng. Prog.
,
25
(
2
), p.
101041
.
18.
Esfe
,
M. H.
,
Arani
,
A. A. A.
,
Niroumand
,
A. H.
,
Yan
,
W. M.
, and
Karimipour
,
A.
,
2015
, “
Mixed Convection Heat Transfer From Surface-Mounted Block Heat Sources in a Horizontal Channel With Nanofluids
,”
Int. J. Heat Mass Transfer
,
89
, pp.
783
791
.
19.
Hidki
,
R.
,
El Moutaouakil
,
L.
,
Boukendil
,
M.
,
Charqui
,
Z.
,
Zrikem
,
Z.
, and
Abdelbaki
,
A.
,
2022
, “
Mixed Convection and Surface Radiation in a Ventilated Cavity Containing Two Heat-Generating Solid Bodies
,”
Mater. Today: Proc.
,
66
, pp.
318
332
.
20.
Mandal
,
S. K.
,
Deb
,
A.
, and
Sen
,
D.
,
2020
, “
A Computational Study on Mixed Convection With Surface Radiation in a Channel in Presence of Discrete Heat Sources and Vortex Generator Based on RSM
,”
J. Therm. Anal. Calorim.
,
141
(
4
), pp.
2239
2251
.
21.
Almensoury
,
M. F.
,
Al-Srayyih
,
B. M.
,
Al-Amir
,
Q. R.
,
Hamzah
,
H. K.
,
Abed
,
A. M.
,
Ali
,
F. H.
,
Bayraktar
,
S.
,
Arıcı
,
M.
, and
Hatami
,
M.
,
2024
, “
Mixed Convection Heat Transfer and Entropy Generation of Water Inside a Square Vented Enclosure With and Without Four Vibrating Cylinders in Horizontal and Vertical Directions
,”
Numer. Heat Transfer Part A: Appl.
,
85
(
13
), pp.
2069
2095
.
22.
Hidki
,
R.
,
El Moutaouakil
,
L.
,
Boukendil
,
M.
,
Charqui
,
Z.
, and
Jamal
,
B.
,
2024
, “
Analysis of Mixed Convection and Surface Radiation in a Horizontal Channel Containing Different Finned Heat-Generating Blocks
,”
Therm. Sci. Eng. Prog.
,
48
, p.
102370
.
23.
Marsault
,
L. V.
,
Ravn
,
C.
,
Overgaard
,
A.
,
Frich
,
L. H.
,
Olsen
,
M.
,
Anstensrud
,
T.
,
Nielsen
,
J.
, and
Overgaard
,
S.
,
2021
, “
Laminar Airflow Versus Turbulent Airflow in Simulated Total Hip Arthroplasty: Measurements of Colony-Forming Units, Particles, and Energy Consumption
,”
J. Hosp. Infect.
,
115
(
2
), pp.
117
123
.
24.
Tawackolian
,
K.
, and
Kriegel
,
M.
,
2022
, “
Turbulence Model Performance for Ventilation Components Pressure Losses
,”
Build. Simul.
,
15
(
3
), pp.
389
399
.
25.
Papanicolaou
,
E.
, and
Jaluria
,
Y.
,
1991
, “
Mixed Convection From an Isolated Heat Source in a Rectangular Enclosure
,”
Numer. Heat Transfer
,
18
(
4
), pp.
427
461
.
26.
Papanicolaou
,
E.
, and
Jaluria
,
Y.
,
1993
, “
Mixed Convection From a Localized Heat Source in a Cavity With Conducting Walls: A Numerical Study
,”
Numer. Heat Transfer Part A: Appl.
,
23
(
4
), pp.
463
484
.
27.
Omri
,
A.
, and
Nasrallah
,
S. B.
,
1999
, “
Control Volume Finite Element Numerical Simulation of Mixed Convection in an Air-Cooled Cavity
,”
Numer. Heat Transfer Part A: Appl.
,
36
(
6
), pp.
615
637
.
28.
Singh
,
S.
, and
Sharif
,
M. A. R.
,
2003
, “
Mixed Convective Cooling of a Rectangular Cavity With Inlet and Exit Openings on Differentially Heated Side Walls
,”
Numer. Heat Transfer Part A: Appl.
,
44
(
3
), pp.
233
253
.
29.
Raji
,
A.
,
Hasnaoui
,
M.
, and
Bahlaoui
,
A.
,
2008
, “
Numerical Study of Natural Convection Dominated Heat Transfer in a Ventilated Cavity: Case of Forced Flow Playing Simultaneous Assisting and Opposing Roles
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1174
1181
.
30.
Beya
,
B. B.
, and
Lili
,
T.
,
2007
, “
Oscillatory Double-Diffusive Mixed Convection in a Two-Dimensional Ventilated Enclosure
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4540
4553
.
31.
Radhakrishnan
,
T. V.
,
Verma
,
A. K.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2007
, “
An Experimental and Numerical Investigation of Mixed Convection From a Heat Generating Element in a Ventilated Cavity
,”
Exp. Therm. Fluid. Sci.
,
32
(
2
), pp.
502
520
.
32.
Shan
,
X.
,
Zhou
,
J.
,
Chang
,
V. W. C.
, and
Yang
,
E. H.
,
2016
, “
Comparing Mixing and Displacement Ventilation in Tutorial Rooms: Students’ Thermal Comfort, Sick Building Syndromes, and Short-Term Performance
,”
Build. Environ.
,
102
, pp.
128
137
.
33.
Ren
,
X. H.
,
Hu
,
J. T.
,
Liu
,
D.
,
Zhao
,
F. Y.
,
Li
,
X. H.
, and
Wang
,
H. Q.
,
2016
, “
Combined Convective Heat and Airborne Pollutant Removals in a Slot Vented Enclosure Under Different Flow Schemes: Parametric Investigations and Non Unique Flow Solutions
,”
Appl. Therm. Eng.
,
94
, pp.
159
169
.
34.
Ren
,
X. H.
,
Hu
,
J. T.
,
Liu
,
D.
,
Liu
,
C. W.
,
Zhao
,
F. Y.
, and
Wang
,
H. Q.
,
2017
, “
Heterogeneous Convective Thermal and Airborne Pollutant Removals From a Partial Building Enclosure With a Conducting Baffle: Parametric Investigations and Steady Transition Flow Solutions
,”
Energy Build.
,
138
, pp.
280
300
.
35.
Jamal Mohamed
,
J. N.
,
Rathinasamy
,
V.
,
Karuppan
,
K.
, and
Parthasarathy
,
R.
,
2023
, “
Numerical Investigation of Convective Cooling in a Rectangular Vented Cavity With Two Inlets and a Hot Obstacle
,”
Numer. Heat Transfer Part A: Appl.
,
84
(
7
), pp.
695
714
.
36.
Chen
,
Z. D.
,
Bandopadhayay
,
P.
,
Halldorsson
,
J.
,
Byrjalsen
,
C.
,
Heiselberg
,
P.
, and
Li
,
Y.
,
2003
, “
An Experimental Investigation of a Solar Chimney Model With Uniform Wall Heat Flux
,”
Build. Environ.
,
38
(
7
), pp.
893
906
.
37.
Jing
,
H.
,
Chen
,
Z.
, and
Li
,
A.
,
2015
, “
Experimental Study of the Prediction of the Ventilation Flow Rate Through Solar Chimney With Large Gap-to-Height Ratios
,”
Build. Environ.
,
89
, pp.
150
159
.
38.
Hou
,
Y.
,
Li
,
H.
, and
Li
,
A.
,
2019
, “
Experimental and Theoretical Study of Solar Chimneys in Buildings With Uniform Wall Heat Flux
,”
Sol. Energy
,
193
(
1–4
), pp.
244
252
.
39.
Mathur
,
J.
, and
Mathur
,
S.
,
2006
, “
Summer-Performance of Inclined Roof Solar Chimney for Natural Ventilation
,”
Energy Build.
,
38
(
10
), pp.
1156
1163
.
40.
Al-Kayiem
,
H. H.
, and
Yassen
,
T. A.
,
2015
, “
On the Natural Convection Heat Transfer in a Rectangular Passage Solar Air Heater
,”
Sol. Energy
,
112
(
2
), pp.
310
318
.
41.
Hosien
,
M. A.
, and
Selim
,
S. M.
,
2017
, “
Effects of the Geometrical and Operational Parameters and Alternative Outer Cover Materials on the Performance of Solar Chimney Used for Natural Ventilation
,”
Energy Build.
,
138
, pp.
355
367
.
42.
Da Silva
,
A. K.
, and
Gosselin
,
L.
,
2005
, “
Optimal Geometry of L and C-Shaped Channels for Maximum Heat Transfer Rate in Natural Convection
,”
Int. J. Heat Mass Transfer
,
48
(
3–4
), pp.
609
620
.
43.
Bassiouny
,
R.
, and
Korah
,
N. S.
,
2009
, “
Effect of Solar Chimney Inclination Angle on Space Flow Pattern and Ventilation Rate
,”
Energy Build.
,
41
(
2
), pp.
190
196
.
44.
Gupta
,
N.
, and
Nayak
,
A. K.
,
2019
, “
Indoor Air Performance and Irreversibility Analysis of a Slot-Ventilated Mechanical System With Wall Heater and Thermosolutal Exchanger
,”
Energy Build.
,
202
, p.
109344
.
45.
Al-Kayiem
,
H. H.
,
Sreejaya
,
K. V.
, and
Chikere
,
A. O.
,
2018
, “
Experimental and Numerical Analysis of the Influence of Inlet Configuration on the Performance of a Roof Top Solar Chimney
,”
Energy Build.
,
159
, pp.
89
98
.
46.
Lin
,
W.
, and
Armfield
,
S. W.
,
2005
, “
Unsteady Natural Convection on an Evenly Heated Vertical Plate for Prandtl Number Pr<1
,”
Phys. Rev. E–Stat. Nonlinear Soft Matter Phys.
,
72
(
6
), p.
066309
.
47.
Bejan
,
A.
,
1985
, “
Mass and Heat Transfer by Natural Convection in a Vertical Cavity
,”
Int. J. Heat Fluid Flow
,
6
(
3
), pp.
149
159
.
48.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
49.
Gebhart
,
B.
, and
Pera
,
L.
,
1971
, “
The Nature of Vertical Natural Convection Flows Resulting From the Combined Buoyancy Effects of Thermal and Mass Diffusion
,”
Int. J. Heat Mass Transfer
,
14
(
12
), pp.
2025
2050
.
50.
Noor
,
D. Z. H.
,
Mirmanto
,
H.
, and
Widiyono
,
E.
,
2015
, “
Numerical Study of Mixed Convection in a Cooled Room
,”
IPTEK J. Technol. Sci.
,
26
(
1
), pp.
1
4
.
51.
Venkateshwarlu
,
K.
,
Nayak
,
A. K.
,
Singh
,
B.
,
Katiyar
,
V. K.
, and
Gupta
,
N.
,
2016
, “
Thermosolutal Mixed Convection in an Air Filled Ventilated Enclosure With Slot Wise Embedded Heat and Contaminant Sources
,”
ASME J. Heat Mass Transfer
,
138
(
3
), p.
032501
.
52.
Deng
,
Q. H.
,
Tang
,
G. F.
,
Li
,
Y.
, and
Ha
,
M. Y.
,
2002
, “
Interaction Between Discrete Heat Sources in Horizontal Natural Convection Enclosures
,”
Int. J. Heat Mass Transfer
,
45
(
26
), pp.
5117
5132
.
53.
Mourad
,
M.
,
Hassen
,
A.
,
Nejib
,
H.
, and
Ammar
,
B. B.
,
2006
, “
Second Law Analysis in Convective Heat and Mass Transfer
,”
Entropy
,
8
(
1
), pp.
1
17
.
54.
Bejan
,
A.
,
2013
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
,
Boca Raton, FL
.
55.
Ghachem
,
K.
,
Kolsi
,
L.
,
Mâatki
,
C.
,
Hussein
,
A. K.
, and
Borjini
,
M. N.
,
2012
, “
Numerical Simulation of Three-Dimensional Double Diffusive Free Convection Flow and Irreversibility Studies in a Solar Distiller
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
869
876
.
56.
Roy
,
M.
,
Roy
,
S.
, and
Basak
,
T.
,
2015
, “
Analysis of Entropy Generation on Mixed Convection in Square Enclosures for Various Horizontal or Vertical Moving Walls
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
258
266
.
57.
Gupta
,
N.
,
Nayak
,
A. K.
, and
Weigand
,
B.
,
2021
, “
Three-Dimensional Characterization of Airflow, Heat and Mass Transfer in a Slot-Ventilated Enclosure
,”
Int. Commun. Heat Mass Transfer
,
121
(
3
), p.
105034
.
58.
Malik
,
S.
, and
Nayak
,
A. K.
,
2017
, “
MHD Convection and Entropy Generation of Nanofluid in a Porous Enclosure With Sinusoidal Heating
,”
Int. J. Heat Mass Transfer
,
111
, pp.
329
345
.
59.
Gupta
,
N.
,
Nayak
,
A. K.
, and
Malik
,
S.
,
2018
, “
Conjugate Heat and Species Transport in an Air Filled Ventilated Enclosure With a Thermo-contaminated Block
,”
Int. J. Heat Mass Transfer
,
117
, pp.
388
411
.
60.
Patankar
,
S.
,
2018
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
61.
Chamkha
,
A. J.
,
Hussain
,
S. H.
, and
Abd-Amer
,
Q. R.
,
2011
, “
Mixed Convection Heat Transfer of Air Inside a Square Vented Cavity With a Heated Horizontal Square Cylinder
,”
Numer. Heat Transfer Part A: Appl.
,
59
(
1
), pp.
58
79
.
62.
Minaei
,
A.
,
Ashjaee
,
M.
, and
Goharkhah
,
M.
,
2014
, “
Experimental and Numerical Study of Mixed and Natural Convection in an Enclosure With a Discrete Heat Source and Ventilation Ports
,”
Heat Transfer Eng.
,
35
(
1
), pp.
63
73
.
You do not currently have access to this content.