Cold end in helium liquefiers, where finally the gas is converted to liquid, may have different alternatives in configuration to achieve maximum exergy efficiency. Apart from high exergy efficiency, which also means low specific power consumption, reliability of operation and complexity of equipment design are also some of the concerns for designers. In this work, various cold end configurations are compared at different operating conditions to help arrive at appropriate choices during design and operation. When single Joule–Thomson valve is replaced by more efficient cold ends with expanders, it allows reduction of the number of Brayton stages in precooling section as well as the total heat exchanger size. Cold end with expander and Joule–Thomson valve combination has been found to be a good compromise between reliability, liquid production, specific power consumption, and exergy efficiency. However, for such a configuration, it is important to fix the intermediate pressure at appropriate level so as to avoid liquid formation at the exit of the expander.

References

1.
Onnes
,
H. K.
, 1908, “
Experiments on the Condensation of Helium by Expansion
,”
KNAW Proceedings, 10 II, 1907–1908
, Amsterdam, pp.
744
747
.
2.
Collins
,
S. C.
, 1946, “
A Helium Cryostat
,”
Rev. Sci. Instrum.
,
18
(
3
), pp.
157
167
.
3.
Collins
,
S. C.
, 1975, “
Apparatus for Liquefying a Cryogen by Isentropic Expansion
,” U.S. Patent No. 3,864,926.
4.
Ergenc
,
S.
, and
Trepp
,
C.
, 1966, “
A Large-Scale Helium Liquefier
,”
Sulzer Tech. Rev.
4
, pp.
1
4
.
5.
Quack
,
H.
, 1977, “
Refrigerating Plant Using Helium as a Refrigerant
,” U.S. Patent No. 4,048,814.
6.
Hubbell
,
R. H.
, and
Toscano
,
W. M.
, 1980, “
Thermodynamic Optimization of Helium Liquefaction Cycles
,”
Adv. Cryog. Eng.
,
25
, pp.
551
562
.
7.
Ziegler
,
B.
, and
Quack
,
H.
, 1992, “
Helium Refrigeration at 40 Percent Efficiency?
,”
Adv. Cryog. Eng.
,
37
, pp.
645
651
.
8.
Eber
,
N.
,
Hostettler
,
A.
,
Kurtcuoglu
,
K.
, and
Senn
,
A.
, 1978, “
The Multipurpose Helium Refrigerators/Liquefiers for the New CERN Experimental Area
,”
Proceedings of 7th International Cryogenic Engineering Conference
, London, UK, pp.
635
641
9.
Minta
,
M.
, and
Smith
,
J. L.
, Jr.
, 1984, “
An Optimum Cold End Configuration for Helium Liquefaction Cycles
,”
Adv. Cryog. Eng.
,
29
, pp.
479
486
.
10.
Thomas
,
R. J.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
, 2010, “
Thermodynamic Analysis of Collin’s Cycle: Aspects of Designing Large Scale Helium Liquefiers
,”
Proceedings of International Cryogenic Engineering Conference 23 (ICEC-23)
, Wroclaw, Poland, pp.
291
297
.
11.
Thomas
,
R. J.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
, 2012, “
Application of Exergy Analysis in Designing Helium Liquefiers
,”
Energy
,
37
(
1
), pp.
207
219
.
12.
Yamada
,
S.
,
Satoh
,
S.
,
Mito
,
T.
,
Maekawa
,
R.
,
Iwamoto
,
A.
,
Moriuchi
,
S.
, Baba, T., Yamamoto, J., Motojima, O., Matsuda, H., Ushijima, I., Nakamura, K., Fukano, T., Katada, M., 1996, “
Liquefaction Control of 10 kW Class Cryogenic System for the LHD
,”
Proceedings of ICEC 16/ICMC
, pp.
83
86
.
13.
Gruehagen
,
H.
, and
Wagner
,
U.
, 2005, “
Measured Performance of Four New 18 kW @ 4.5 K Helium Refrigerators for the LHC Cryogenic System
,”
ICEC 20
, China, pp.
991
994
.
14.
Bai
,
H.
,
Bi
,
Y.
,
Zhu
,
P.
,
Zhang
,
Q.
,
Wu
,
K.
,
Zhuang
,
M.
, and
Jin
,
Y.
, 2006, “
Cryogenics in EAST
,”
Fusion Eng. Des.
,
81
, pp.
2597
2603
.
15.
Choi
,
C. H.
,
Chang
,
H. S.
,
Park
,
D. S.
,
Kim
,
Y. S.
,
Bak
,
J. S.
,
Lee
,
G. S.
, Kwon, I.K., Kim, H.M., Cho, M.C., Kim, H.S., Fauve, E., Abe, I., Briend, P., Bernhardt, J.M., Cardet, Y., Dauguet, P., Beauvisage, J., Andrieu, F., Yang, S.H., Gistau-Baguer, G.M., 2006, “
Helium Refrigeration System for the KSTAR
,”
Fusion Eng. Des.
,
81
, pp.
2623
2631
.
16.
Claudet
,
G.
,
Mardion
,
G. B.
,
Jager
,
B.
, and
Gistau
,
G.
, 1986, “
Design of the Cryogenic System for the TORE SUPRA Tokamak
,”
Cryogenics
,
26
, pp.
443
449
.
17.
Dauguet
,
P.
,
Briend
,
P.
,
Delcayre
,
F.
,
Ghisolfi
,
A.
,
Guistau-Baguer
,
G. M.
,
Guerin
,
C.
,
Hilbert
,
B.
,
Marot
,
G.
, and
Monneret
,
E.
, 2004, “
Design, Construction and Start up by Air Liquid of Two 18KW at 4.5K Helium Refrigerators for the New CERN Accelerator: LHC
,”
Adv. Cryog. Eng.
,
49
, pp
147
153
.
18.
Dauguet
,
P.
,
Briend
,
P.
,
Abe
,
I.
,
Fauve
,
E.
,
Bernhardt
,
J. M.
,
Andrieu
,
F.
, and
Beauvisage
,
J.
, 2008, “
Design and Manufacturing of the KSTAR Tokamak Helium Refrigeration System
,”
Adv. Cryog. Eng.
,
53
, pp.
564
569
.
19.
Dutta
,
R.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
, 2011, “
Customization and Validation of a Commercial Process Simulator for Dynamic Simulation of Helium Liquefier
,”
Energy
,
36
(
5
), pp.
3204
3214
.
20.
Dutta
,
R.
,
Thomas
,
R. J.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
, 2010, “
Dynamic Simulation of Large-Scale Helium Liquefier Using Aspen HYSYS®
,”
23rd National Symposium on Cryogenics
, NIT Rourkela, India.
21.
Deschildre
,
C.
,
Barraud
,
A.
,
Bonnay
,
P.
,
Briend
,
P.
,
Girard
,
A.
,
Poncet
,
J. M.
, Roussel, P., Sequeira, S.E., 2008, “
Dynamic Simulation of an Helium Refrigerator
,”
Adv. Cryog. Eng.
,
53
, pp.
475
482
.
22.
McCarty
,
R. D.
, and
Arp
,
V. D.
, 1990, “
A New Wide Range Equation of State for Helium
,”
Adv. Cryog. Eng.
,
35
, pp.
1465
1475
.
23.
Ganni
,
V.
, 2009, “
Optimal Design and Operation of Helium Refrigeration Systems
,”
Proceedings of Particle Accelerator Conference PAC09
, Vancouver, BC, Canada.
24.
Thomas
,
R. J.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
, 2011, “
Exergy Analysis of Helium Liquefaction Systems Based on Modified Claude Cycle With Two-Expanders
,”
Cryogenics
,
51
(
6
), pp.
287
294
.
25.
Thomas
,
R. J.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
, 2012, “
Exergy Analysis for Determining Optimum Stages and Associated Design Parameters of Large Helium Liquefiers
,”
Cryogenics
(submitted).
26.
Thomas
,
R. J.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
, 2011, “
Role of Expanders in Helium Liquefaction Cycles: Parametric Studies Using Collins Cycle
,”
Fusion Eng. Des.
,
86
, pp.
318
324
.
You do not currently have access to this content.