Two-phase flow modeling of solid propellants has great potential for simulating and predicting the ballistic parameters in closed-vessel tests as well as in guns. This paper presents a numerical model describing the combustion of a solid propellant in a closed chamber and takes into account what happens in such two-phase, unsteady, reactive-flow systems. The governing equations were derived in the form of coupled, nonlinear axisymmetric partial differential equations. The governing equations with customized parameters were implemented into ansys fluent 14.5. The presented solutions predict the pressure profile inside the closed chamber. The results show that the present code adequately predicts the pressure–time history. The numerical results are in agreement with the experiment. Some discussions are given regarding the effect of the grain shape and the sensitivity of these predictions to the initial pressure of the solid propellant bed. The study demonstrated the capability of using the present model implemented into Fluent, to simulate the combustion of solid propellants in a closed vessel and, eventually, the interior ballistic process in guns.

References

1.
Thakre
,
P.
, and
Yang
,
V.
,
2010
, “
Solid Propellants
,”
Encyclopedia of Aerospace Engineering
,
Wiley
,
Chichester, UK
, pp.
1
9
.
2.
Murphym
,
J. J.
,
Fuchinoue
,
R.
, and
Krier
,
H.
,
1999
, “
Transient Solid Propellant Burning Rate Measurement Techniques
,”
36th JANNAF Combustion Subcommittee Meeting
, Cocoa Beach, FL, Oct. 18–21, Chemical Propulsion Information Agency Publication 691, Vol.
1
, pp.
527
538
.
3.
Fry
,
R. S.
,
DeLuca
,
L.
,
Fredericks
,
R.
,
Gadiot
,
G.
,
Strecker
,
R.
,
Beser
,
H. L.
,
Whitehouse
,
A.
,
Traineau
,
J. C.
,
Ribereau
,
D.
, and
Reynaud
,
J. P.
,
2001
, “
Evaluation of Methods Used Within the NATO Propulsion Community to Measure and Use Burning Rate in Solid Propellant Rocket Systems
,”
50th JANNAF Propulsion Meeting
, Salt Lake City, UT, July 11–13, Chemical Propulsion Agency Publication 705, Vol.
1
, pp.
221
238
4.
Eisenreich
,
N.
,
Kugler
,
H. P.
, and
Sinn
,
F.
,
1987
, “
An Optical System for Measuring the Burning Rate of Solid Propellant Strands
,”
Propellant, Explos., Pyrotech.
,
12
(
3
), pp.
78
80
.
5.
Hasegawa
,
H.
,
Tokudome
,
S.
,
Hanzawa
,
M.
, and
Kohno
,
M.
,
2003
, “
Erosive Burning of Aluminized Composite Propellants: X-RayAbsorption Measurement, Correlation and Application
,”
AIAA
Paper No. 2003-4812.
6.
Wang
,
J.
, and
Sang
,
B.
,
1998
, “
Laser Technique for Determining Solid Propellant Transient Burning Rates During Oscillatory Combustion
,”
Fuel
,
77
(
15
), pp.
1845
1849
.
7.
Bozic
,
V. S.
,
Blagojevic
,
D. D.
, and
Anicin
,
B. A.
,
1998
, “
Measurement System for Determining Solid Propellant Burning Rate Using Transmission Microwave Interferometry
,”
J. Propul. Power
,
14
(
4
), pp.
421
428
.
8.
North Atlantic Council, 1997, “
Definition and Determination of Ballistic Properties of Gun Propellants
,” STANAG 4115, ED.2, Brussels.
9.
Yilmaz
,
N.
,
Donaldson
,
B.
,
Gill
,
W.
, and
Erikson
,
W.
,
2008
, “
Solid Propellant Burning Rate From Strand Burner Pressure Measurement
,”
Propellants, Explos., Pyrotech.
,
33
(
2
), pp.
109
117
.
10.
Ronald
,
D. A.
, and
Kurt
,
D. F.
,
1987
, “
IBHVG2—A User's Guide
,” U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, Report No. BRL-TR-2829.
11.
North Atlantic Council
,
2009
, “
Definition and Determination of Ballistic Properties of Gun Propellants
,” STANAG 4367, Brussels.
12.
Gough
,
P. S.
,
1990
, “
The XNOVAKTC Code
,” U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD,
Report No. BRL-CR-627
.
13.
Nusca
,
M. J.
, and
Gough
,
P. S.
,
1998
, “
Numerical Model of Multiphase Flows Applied to Solid Propellant Combustion in Gun Systems
,”
AIAA
Paper No. 98-3695.
14.
Leciejewski
,
Z. K.
,
2011
, “
Comparative Closed Vessel Tests: Influence of Ignition and Loading Conditions on Propellant Burning Rate
,”
Mater. Wysokoenergetyczne J.
,
3
, pp.
57
63
.
15.
Papy
,
A.
,
2005
, “
Etude Numerique de la Ballistique Interieur des Armes de Petite Calibr
,” Ph.D. thesis, Free University of Brussels, Brussels, Belgium.
16.
Sung
,
H.-G.
,
Jang
,
J.-S.
, and
Roh
,
T.-S.
,
2013
, “
Application of Eulerian–Lagrangian Approach to Gas-Solid Flows in Interior Ballistics
,”
ASME J. Appl. Mech.
,
80
(
3
), p.
031407
.
17.
Acharya
,
R.
, and
Kuo
,
K.
,
2010
, “
Implementation of Approximate Riemann Solver to Two-Phase Flows in Mortar Systems
,”
ASME J. Appl. Mech.
,
77
(
5
), p.
051401
.
18.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic Press
,
New York
.
19.
Miura
,
H.
, and
Matsuo
,
A.
,
2006
, “
Numerical Simulation of Projectile Accelerator Using Solid Propellant
,”
AIAA
Paper No. 2006-1439.
20.
Mickovic
,
D.
, and
Jaramaz
,
S.
,
2009
, “
Igniter Function: Experimental and Theoretical Studies
,”
Propellant, Explos., Pyrotech.
,
35
(
3
), pp.
254
259
.
21.
Miura
,
H.
,
Mastuo
,
A.
, and
Nakamura
,
Y.
,
2008
, “
Multi-Dimensional Simulation on Ignition Stage of Granular Solid Propellant Varying Primer Configuration
,”
Int. J. Energy Math. Chem. Propul.
,
7
(
6
), pp.
507
522
.
22.
Jaramaz
,
S.
,
Mickovic
,
D.
, and
Elek
,
P.
,
2011
, “
Two-Phase Flows in Gun Barrel: Theoretical and Experimental Studies
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
475
487
.
23.
Miura
,
H.
,
Mastuo
,
A.
, and
Nakamura
,
Y.
,
2011
, “
Three-Dimensional Simulation of Pressure Fluctuation in Granular Solid Propellant Chamber Within an Ignition Stage
,”
Propellant, Explos., Pyrotech.
,
36
(
3
), pp.
259
267
.
24.
Gollan
,
R. J.
,
Johnston
,
I. A.
,
O'Flaherty
,
B. T.
, and
Jacobs
,
P. A.
,
2007
, “
Development of Casbar: A Two-Phase Flow Code for the Interior Ballistics Problem
,”
16th Australasian Fluid Mechanics Conference
, Gold Coast, Australia, Dec. 2–7, pp.
259
302
.
25.
Nussbaum
,
J.
,
Helluy
,
P.
,
Herard
,
J. M.
, and
Baschung
,
B.
,
2011
, “
Multi-Dimensional Two-Phase Flow Modeling Applied to Interior Ballistics
,”
ASME J. Appl. Mech.
,
78
(
5
), p.
051016
.
26.
Johnston
,
I. A.
,
2005
, “
The Noble-Abel Equation of State: Thermodynamic Derivations for Ballistics Modelling
,” Weapon Sysrems Division, Defence Science and Technology Organisation, Australia,
Paper No. DSTO-TN-0670
.
27.
Miura
,
H.
, and
Mastuo
,
A.
,
2006
, “
Numerical Simulation of Solid Propellant Combustion in a Gun Chamber
,”
AIAA
Paper No. 2006-4955.
28.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing
,
Washington, DC
.
29.
Ansys-Fluent, Inc.
,
2012
,
Fluent Users Manual, Version 14.0
,
Ansys-Fluent
,
Lebanon, NH
.
30.
Nussbaum
,
J.
,
Helluy
,
P.
,
Herard
,
J.-M.
, and
Carriere
,
A.
,
2007
, “
Numerical Simulations of Reactive Two-Phase Gas-Particle Flows
,”
AIAA
Paper No. 2007-4161.
You do not currently have access to this content.