We describe an analytic approach to designing axially water-cooled Bitter-type electromagnets with an emphasis on heat dissipation considerations. The design method here described aims to enhance the efficiency of the design process by minimizing the role of finite element analysis (FEA) software. A purely analytic design optimization scheme is prescribed for establishing the cooling hole placement. FEA software is only used to check the accuracy of analytic predictions. The analytic method derived in this paper predicts the required heat dissipation rate by approximating the volumetric joule heating profile with a smooth, continuous profile. Equations for turbulent convective heat transfer in circular ducts are generalized to model the cooling capacity of elongated cooling passages. This method is currently in use at the University of Maryland Baltimore County Dusty Plasma Laboratory to design a Bitter magnet capable of generating fields of 10 T.

References

1.
Dixon
,
I.
,
Bird
,
M. D.
, and
Bole
,
S.
,
2002
, “
End Effects in the NHMFL 45 T Hybrid Resistive Insert
,”
IEEE Trans. Appl. Supercond.
,
12
(
1
), pp.
452
455
.
2.
Brechna
,
H.
, and
Montgomery
,
D. B.
,
1962
, “
A High Performance D.C. Magnet Utilizing Axial Cooled Disks
,”
NML
,
62
(
1
), pp.
1
44
.
3.
Bitter
,
F.
,
1936
, “
Design of Powerful Electromagnets: Part II—The Magnetizing Coil
,”
Rev. Sci. Instrum.
,
7
(
12
), pp.
482
488
.
4.
Bird
,
M. D.
,
Bole
,
S.
,
Eyssa
,
Y. M.
,
Gao
,
B. J.
, and
Schneider-Muntau
,
H. J.
,
1996
, “
Design of a Poly-Bitter Magnet at the NHMFL
,”
IEEE Trans. Magn.
,
32
(
4
), pp.
2542
2545
.
5.
Gao
,
B.
,
Schneider-Muntau
,
H.
,
Eyssa
,
Y.
, and
Bird
,
M.
,
1996
, “
A New Concept in Bitter Disk Design
,”
IEEE Trans. Magn.
,
32
(
4
), pp.
2503
2506
.
6.
Montgomery
,
D. B.
,
1969
,
Solenoid Magnet Design: The Magnetic and Mechanical Aspects of Resistive and Superconducting Systems
,
Wiley-Interscience
,
New York
, Chap. 4.
7.
Bird
,
M. D.
,
2004
, “
Resistive Magnet Technology for Hybrid Inserts
,”
Supercond. Sci. Technol.
,
17
(
8
), pp.
R19
R33
.
8.
Hicks
,
C. R.
, and
Turner
,
K. V.
,
1999
,
Fundamental Concepts in the Design of Experiments
, 5th ed.,
Oxford University Press
,
New York
, Chap. 3.
9.
Sukhatme
,
S. P.
,
2005
,
A Textbook on Heat Transfer
, 4th ed.,
Universities Press
,
Hyderabad, India
, Chap. 5.
10.
Chapman
,
A. J.
,
1984
,
Heat Transfer
, 4th ed.,
Macmillian
,
New York
, Chap. 8.
11.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill
,
New York
, Chap. 14.
12.
Munson
,
B. R.
,
Okiishi
,
T. H.
,
Huebsch
,
W. W.
, and
Rothmayer
,
A. P.
,
2013
,
Fundamentals of Fluid Mechanics
, 7th ed.,
Wiley
,
New York
, Chap. 8.
13.
Granger
,
R. A.
,
1985
,
Fluid Mechanics
,
CBS College Publishing
,
New York
, Chap. 10.
14.
Babatola
,
J.
,
Oguntuase
,
A.
,
Oke
,
I.
, and
Ogedengbe
,
M.
,
2008
, “
An Evaluation of Frictional Factors in Pipe Network Analysis Using Statistical Methods
,”
Environ. Eng. Sci.
,
25
(
4
), pp.
539
547
.
15.
Scap
,
D.
,
Hoić
,
M.
, and
Jokzć
,
A.
,
2013
, “
Determination of the Pareto Frontier for Multi-Objective Optimization Problem
,”
Trans. FAMENA
,
37
(
2
), pp.
15
28
.
16.
Wolfram
,
S.
,
2012
, “
Mathematica 9
.”
17.
Brady
,
G. S.
, and
Clauser
,
H. R.
,
1991
,
Materials Handbook Part 1
, 13th ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.