The present work is related to the design of a manifold mini/microchannel heat sink with high modularity and performance for electronics cooling, utilizing two well established (i.e., jet impingement and channel flow) cooling technologies. A manifold system with cylindrical connection tubes and tapered inserts is designed for uniform coolant distribution among different channels and easy manufacturing of the whole cooling device. The design of the insert provides freedom to manipulate the flow structure within each manifold section and balance the cooling performance and required pumping power for the cold plate. Due to the optimized tapered shape of the insert inlet branches, fluid flows more uniformly through the entire heat sink fin region leading to uniform heat sink base temperatures. Extending the design of the heat sink fin structure from the mini to microscale, and doubling of the number of insert inlet/outlet branches, results in an 80% increase in the cooling performance, from 30 kW/(m2 · K) to 54 kW/(m2 · K), with only a 0.94 kPa added pressure drop penalty. The present cold plate design also provides flexibility to assemble manifold sections in different configurations to reach different flow structures, and thus different cooling performance, without redesign. The details of the modular manifold and possible configurations of a cold plate comprising three manifold sections are shown herein. A conjugate flow and heat transfer three-dimensional (3D) numerical model is developed for each configuration of the cold plate to demonstrate the merits of each modular design. Parallel flow configurations are used to satisfy a uniform cooling requirement from each module, and it is shown that “U-shape” parallel flow “base” configuration cools the modules more uniformly than a “Z-shape” flow pattern due to intrinsic pressure distribution characteristics. A serial fluid flow configuration requires the minimum coolant flow rate with a gradually increasing device temperature along the flow direction. Two mixed (i.e., parallel + serial flow) configurations achieve either cooling performance similar to the U-shape configuration with slightly more than half of the coolant flow rate, or cooling of a specific module to a much lower temperature level. Generally speaking, the current cold plate design significantly extends its application to different situations with distinct cooling requirements.

References

1.
Sathe
,
S.
, and
Sammakia
,
B.
,
1998
, “
A Review of Recent Developments in Some Practical Aspects of Air-Cooled Electronic Packages
,”
ASME J. Heat Transfer
,
120
(
4
), pp.
830
839
.
2.
Zhou
,
F.
, and
Catton
,
I.
,
2011
, “
Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks With Various Pin Cross-Sections
,”
Numer. Heat Transfer, Part A
,
60
(
2
), pp.
107
128
.
3.
Zhou
,
F.
,
DeMoulin
,
G.
,
Geb
,
D.
, and
Catton
,
I.
,
2012
, “
Closure for a Plane Fin Heat Sink With Scale-Roughened Surfaces for Volume Averaging Theory (VAT) Based Modeling
,”
Int. J. Heat Mass Transfer
,
55
(25–26), pp.
7677
7685
.
4.
Zhou
,
F.
, and
Catton
,
I.
,
2013
, “
A Numerical Investigation of Turbulent Flow and Heat Transfer in Rectangular Channels With Elliptic Scale-Roughened Walls
,”
ASME J. Heat Transfer
,
135
(
8
), p.
081901
.
5.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
, p.
111702
.
6.
Copeland
,
D. W.
,
2003
, “
Fundamental Performance Limits of Heatsinks
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
221
225
.
7.
Saini
,
M.
, and
Webb
,
R. L.
,
2003
, “
Heat Rejection Limits of Air Cooled Plane Fin Heat Sinks for Computer Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
71
79
.
8.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
,
2003
, “
Transport in Microchannels—A Critical Review
,”
Annu. Rev. Heat Transfer
,
13
(
13
), pp.
1
50
.
9.
Dede
,
E. M.
,
2012
, “
Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
.
10.
Dede
,
E. M.
, and
Liu
,
Y.
,
2013
, “
Experimental and Numerical Investigation of a Multi-Pass Branching Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
55
(1–2), pp.
51
60
.
11.
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2015
, “
Effect of Sub-Cooling on Performance of a Multi-Jet Two Phase Cooler With Multi-Scale Porous Surfaces
,”
Int. J. Therm. Sci.
,
87
, pp.
110
120
.
12.
Rau
,
M. J.
,
Garimella
,
S. V.
,
Dede
,
E. M.
, and
Joshi
,
S. N.
,
2015
, “
Boiling Heat Transfer From an Array of Round Jets With Hybrid Surface Enhancements
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071501
.
13.
Hassan
,
I.
,
Phutthavong
,
P.
, and
Abdelgawad
,
M.
,
2004
, “
Microchannel Heat Sinks: An Overview of the State-of-the-Art
,”
Microscale Thermophys. Eng.
,
8
(
3
), pp.
183
205
.
14.
Kandlikar
,
S. G.
,
2005
, “
High Flux Heat Removal With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
,
26
(
8
), pp.
5
14
.
15.
Ohadi
,
M. M.
,
Choo
,
K.
,
Dessiatoun
,
S.
, and
Cetegen
,
E.
,
2013
,
Next Generation Microchannel Heat Exchangers
,
Springer
,
New York
.
16.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
17.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.
18.
Bhunia
,
A.
,
Chandrasekaran
,
S.
, and
Chung-Lung
,
C.
,
2007
, “
Performance Improvement of a Power Conversion Module by Liquid Micro-Jet Impingement Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
2
), pp.
309
316
.
19.
Harpole
,
G. M.
, and
Eninger
,
J. E.
,
1991
, “
Micro-Channel Heat Exchanger Optimization
,”
Seventh Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), Phoenix, AZ, Feb. 12–14, pp.
59
63
.
20.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
21.
Copeland
,
D.
,
1995
, “
Manifold Microchannel Heat Sinks: Numerical Analysis
,”
ASME International Mechanical Engineering Congress and Exposition
, Nov. 12–17,
ASME
,
San Francisco, CA
, pp.
111
116
.
22.
Copeland
,
D.
,
Behnia
,
M.
, and
Nakayama
,
W.
,
1997
, “
Manifold Microchannel Heat Sinks: Isothermal Analysis
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
,
20
(
2
), pp.
96
102
.
23.
Copeland
,
D.
,
Takahira
,
H.
,
Nakayama
,
W.
, and
Pak
,
B. C.
,
1995
, “
Manifold Microchannel Heat Sinks: Theory and Experiment
,” International Electronic Packaging Conference (INTERPACK '95), Lahaina, HI, T. R. Hsu, A. Bar-Cohen, and W. Nakayama, eds., Vol. 2, pp.
829
835
.
24.
Kim
,
Y.
,
Chun
,
W.
,
Kim
,
J.
,
Pak
,
B.
, and
Baek
,
B.
,
1998
, “
Forced Air Cooling by Using Manifold Microchannel Heat Sinks
,”
KSME Int. J.
,
12
, pp.
709
718
.
25.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
,
2002
, “
Numerical Optimization of the Thermal Performance of a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2823
2827
.
26.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
,
2003
, “
Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1553
1562
.
27.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2013
, “
Design Optimization of Manifold Microchannel Heat Sink Through Evolutionary Algorithm Coupled With Surrogate Model, Components
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
3
(
4
), pp.
617
624
.
28.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
A Novel High Performance, Ultra Thin Heat Sink for Electronics
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
586
598
.
29.
Sarangi
,
S.
,
Bodla
,
K. K.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2014
, “
Manifold Microchannel Heat Sink Design Using Optimization Under Uncertainty
,”
Int. J. Heat Mass Transfer
,
69
, pp.
92
105
.
30.
Pan
,
M.
,
Tang
,
Y.
,
Pan
,
L.
, and
Lu
,
L.
,
2008
, “
Optimal Design of Complex Manifold Geometries for Uniform Flow Distribution Between Microchannels
,”
Chem. Eng. J.
,
137
(
2
), pp.
339
346
.
31.
Pan
,
M.
,
Tang
,
Y.
,
Yu
,
H.
, and
Chen
,
H.
,
2009
, “
Modeling of Velocity Distribution Among Microchannels With Triangle Manifolds
,”
AIChE J.
,
55
(
8
), pp.
1969
1982
.
32.
Solovitz
,
S. A.
, and
Mainka
,
J.
,
2011
, “
Manifold Design for Micro-Channel Cooling With Uniform Flow Distribution
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051103
.
33.
Mohammadi
,
M.
,
Jovanovic
,
G. N.
, and
Sharp
,
K. V.
,
2013
, “
Numerical Study of Flow Uniformity and Pressure Characteristics Within a Microchannel Array With Triangular Manifolds
,”
Comput. Chem. Eng.
,
52
, pp.
134
144
.
34.
Stevanovic
,
L. D.
,
Beaupre
,
R. A.
,
Gowda
,
A. V.
,
Pautsch
,
A. G.
, and
Solovitz
,
S. A.
,
2010
, “
Integral Micro-Channel Liquid Cooling for Power Electronics
,”
Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
), Palm Springs, CA, Feb. 21–25, pp.
1591
1597
.
35.
Olejniczak
,
K. J.
,
Flint
,
T.
,
Simco
,
D.
,
Storkov
,
S.
,
McGee
,
B.
,
George
,
K.
,
Killeen
,
P.
,
Curbow
,
A.
,
Shaw
,
R. S.
,
Passmore
,
B.
, and
McNutt
,
T. R.
,
2015
, “
System-Level Packaging of Wide Bandgap Inverters for Electric Traction Drive Vehicles
,”
ASME
Paper No. InterPACKICNMM2015-48602.
36.
Zhou
,
F.
,
Liu
,
Y.
,
Joshi
,
S. N.
,
Liu
,
Y.
, and
Dede
,
E. M.
,
2015
, “
Modular Flow Structure Design for a Single-Phase Manifold Microchannel Cold Plate
,”
ASME
Paper No. InterPACKICNMM2015-48029.
37.
CD-adapco
,
2014
,
User's Guide for Star CCM+ V9.04
.
38.
Ansys
,
2014
, Use's Guide for Ansys CFX V15.0.
39.
Ferrero
,
M.
,
Scattina
,
A.
,
Chiavazzo
,
E.
,
Carena
,
F.
,
Perocchio
,
D.
,
Roberti
,
M.
,
Toscano Rivalta
,
G.
, and
Asinari
,
P.
,
2013
, “
Louver Finned Heat Exchangers for Automotive Sector: Numerical Simulations of Heat Transfer and Flow Resistance Coping With Industrial Constraints
,”
ASME J. Heat Transfer
,
135
(
12
), p.
121801
.
40.
Zhou
,
F.
,
Dede
,
E. M.
, and
Joshi
,
S. N.
,
2015
, “
A Novel Design of Hybrid Slot Jet and Mini-Channel Cold Plate for Electronics Cooling
,”
SEMI-THERM 2015
,
San Jose
, CA, Mar. 15–19.
41.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.