In this study, the influences of the applied magnetic field and fluid elasticity were investigated for a nonlinear viscoelastic fluid obeying the Carreau equation between concentric annulus where the inner cylinder rotates at a constant angular velocity and the outer cylinder is stationary. The governing motion and energy balance equations are coupled while viscous dissipation is taken into account, adding complexity to the already highly correlated set of differential equations. The numerical solution is obtained for the narrow gap limit and steady-state base flow. Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow was investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effects of the Hartmann number, the Brinkman number, the Deborah number, and the fluid elasticity on the stability of the flow were investigated. The application of the magnetic field induces a resistive force acting in the opposite direction of the flow, thus causing its deceleration. Moreover, the study shows that the presence of magnetic field tends to slowdown the fluid motion and thus increases the fluid temperature. However, the total entropy generation number decreases as the Hartmann number and fluid elasticity increase and it increases with increasing Brinkman number.

References

1.
Bejan
,
A.
,
1982
, “
Second-Law Analysis in Heat Transfer and Thermal Design
,”
Adv. Heat Transfer
,
15
, pp.
1
58
.
2.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
3.
Simon
,
T. M.
,
Reitch
,
F.
,
Jolly
,
M. R.
,
Ito
,
K.
, and
Banks
,
H. T.
,
2001
, “
The Effective Magnetic Properties of Magnetorheological Fluids
,”.
Math. Comput. Modell.
,
33
(
1–3
), pp.
273
274
.
4.
Engina
,
T.
,
Evrenselb
,
C.
, and
Gordaninejadb
,
F.
,
2005
, “
Numerical Simulation of Laminar Flow of Water-Based Magneto-Rheological Fluids in Microtubes With Wall Roughness Effect
,”
Int. Commun. Heat Mass Transfer
,
32
(
8
), pp.
1016
1020
.
5.
Jang
,
K. I.
,
Min
,
B.-K.
, and
Seok
,
J.
,
2010
, “
A Behavior Model of a Magnetorheological Fluid in Direct Shear Mode
,”
J. Magn. Magn. Mater.
,
323
(
10
), pp.
1324
1329
.
6.
Martin Laun
,
H.
,
Kormann
,
C.
, and
Willenbacher
,
N.
,
1996
, “
Rheometry on Magnetorheological (MR) Fluids. I. Steady Shear Flow in Stationary Magnetic Fields
,”
Rheol. Acta
,
35
(
5
), pp.
417
432
.
7.
Dorfmanna
,
A.
,
Ogdenb
,
R. W.
, and
Wineman
,
A. S.
,
2007
, “
A Three-Dimensional Non-Linear Constitutive Law for Magnetorheological Fluids, With Applications
,”
Int. J. Non-Linear Mech.
,
42
(
2
), pp.
381
390
.
8.
Olabi
,
A. G.
, and
Grunwald
,
A.
,
2007
, “
Design and Application of Magneto-Rheological Fluid
,”
Mater. Des.
,
28
(
10
), pp.
2658
2664
.
9.
Metered
,
H.
,
Bonello
,
P.
, and
Oyadiji
,
S. O.
,
2009
, “
The Experimental Identification of Magnetorheological Dampers and Evaluation of Their Controllers
,”
Mech. Syst. Signal Process.
,
24
(
4
), pp.
986
994
.
10.
Huang
,
J.
,
Zhang
,
J. Q.
,
Yang
,
Y.
, and
Wei
,
Y. Q.
,
2002
, “
Analysis and Design of a Cylindrical Magneto-Rheological Fluid Brake
,”
J. Mater. Process. Technol.
,
129
(1–3), pp.
559
562
.
11.
Hayat
,
T.
,
Khan
,
M.
, and
Ayub
,
M.
,
2004
, “
Couette and Poiseuille Flows of an Oldroyd 6-Constant Fluid With Magnetic Field
,”
J. Math. Anal. Appl.
,
298
(
1
), pp.
225
244
.
12.
Engin
,
T.
,
Evrensel
,
C.
, and
Gordaninejad
,
F.
,
2005
, “
Numerical Simulation of Laminar Flow of Water-Based Magneto-Rheological Fluids in Microtubes With Wall Roughness Effect
,”
Int. Commun. Heat Mass Transfer
,
32
(
8
), pp.
1016
1025
.
13.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
, 2nd ed., Vol.
1
,
Wiley
,
Hoboken, NJ
.
14.
Li
,
W. H.
,
Du
,
H.
,
Chen
,
G.
, and
Yeo
,
S. H.
,
2002
, “
Experimental Investigation of Creep and Recovery Behaviors of Magnetorheological Fluids
,”
Mater. Sci. Eng. A
,
333
(1–2), pp.
368
376
.
15.
Abu-Hijleh
,
B. A. K.
, and
Heilen
,
W. N.
,
1999
, “
Entropy Generation Due to Laminar Natural Convection Over a Heated Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
42
(
22
), pp.
4225
4233
.
16.
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Mamun
,
M. A. H.
,
2002
, “
Entropy Generation in a Porous Channel With Hydromagnetic Effect
,”
Exergy, Int. J.
,
2
(
4
), pp.
300
308
.
17.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2003
, “
The Second Law Analysis in Fundamental Convective Heat Transfer Problems
,”
Int. J. Therm. Sci.
,
42
(
2
), pp.
177
186
.
18.
Carrington
,
C. G.
, and
Sun
,
Z. F.
,
1992
, “
Second Law Analysis of Combined Heat and Mass Transfer in Internal Flow and External Flows
,”
Int. J. Heat Fluid Flow
,
13
(
1
), pp.
65
70
.
19.
Arpaci
,
V. S.
, and
Selamet
,
A.
,
1990
, “
Entropy Production in Boundary Layers
,”
J. Thermophys. Heat Transfer
,
4
(
3
), pp.
404
407
.
20.
Abu-Hijleh
,
B. A. K.
,
1998
, “
Entropy Generation in Laminar Convection From an Isothermal Cylinder in Cross Flow
,”
Energy
,
23
(
10
), pp.
851
857
.
21.
Khalkhali
,
H.
,
Faghri
,
A.
, and
Zuo
,
Z. J.
,
1999
, “
Entropy Generation in a Heat Pipe System
,”
Appl. Therm. Eng.
,
19
(
10
), pp.
1027
1043
.
22.
Haddad
,
O. M.
,
Abu-Qudais
,
M.
,
Abu-Hijleh
,
B. A.
, and
Maqableh
,
A. M.
,
2000
, “
Entropy Generation Due to Laminar Forced Convection Flow Past a Parabolic Cylinder
,”
Int. J. Numer. Methods Heat Fluid Flow
,
10
(
7
), pp.
770
779
.
23.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2002
, “
Analysis of Mixed Convection-Radiation Interaction in a Vertical Channel: Entropy Generation
,”
Exergy Int. J.
,
2
(
4
), pp.
330
339
.
24.
Buhler
,
L.
,
1998
, “
Laminar Buoyant Magnetohydrodynamics Flow in a Vertical Rectangular Ducts
,”
Phys. Fluid
,
10
(
1
), pp.
223
236
.
25.
Raptis
,
A.
, and
Kafoussias
,
N.
,
1982
, “
Heat Transfer in Flow Through a Porous Medium Bounded by an Infinite Vertical Plane Under the Action of Magnetic Field
,”
Energy Res.
,
6
(
3
), pp.
241
245
.
26.
Chamkha
,
A. J.
,
1997
, “
MHD Free Convection From a Vertical Plate in Saturated Porous Medium
,”
Appl. Math. Model.
,
21
(
10
), pp.
603
609
.
27.
Albshbeshy
,
E. M. A.
,
1998
, “
Heat Transfer Over Stretching Surface With Variable Heat Flux
,”
J. Appl. Phys. D
,
31
(
16
), pp.
1951
1954
.
28.
Anwar
,
O.
,
Makinde
,
O. D.
,
Zueco
,
J.
, and
Ghosh
,
S. K.
,
2012
, “
Hydromagnetic Viscous Flow in a Rotating Annular High-Porosity Medium With Nonlinear Forchheimer Drag Effects: Numerical Study
,”
World J. Modell. Simul.
,
8
(
2
), pp.
83
95
.
29.
Rashidi
,
M. M.
,
Beg
,
O. A.
,
Mehr
,
N. F.
, and
Rostami
,
B.
,
2013
, “
Second Law Analysis of Hydromagnetic Flow From a Stretching Rotating Disk: DTM-Pade Simulation of Novel Nuclear MHD Propulsion Systems
,”
Front. Aerosp. Eng.
,
2
(
1
), pp.
29
39
.http://www.dpi-journals.com/index.php/FAE/article/view/114
30.
Nishiyama
,
H.
,
Takana
,
H.
,
Shinohara
,
K.
,
Mizuki
,
K.
,
Katagiri
,
K.
, and
Ohta
,
M.
,
2011
, “
Experimental Analysis on MR Fluid Channel Flow Dynamics With Complex Fluid–Wall Interactions
,”
J. Magn. Magn Mater.
,
323
(10), pp.
1293
1297
.
31.
Ashrafi
,
N.
, and
Hazbavi
,
A.
,
2013
, “
Heat Transfer in Flow of Nonlinear Fluids With Viscous Dissipation
,”
Arch. Appl. Mech.
,
83
(
12
), pp.
1739
1754
.
32.
Woods
,
L. C.
,
1975
,
Thermodynamics of Fluid Systems
,
Oxford University Press
,
Oxford, UK
.
33.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
34.
Paoletti
,
S.
,
Rispoli
,
F.
, and
Sciubba
,
E.
,
1989
, “
Calculation of Exergetic Losses in Compact Heat Exchanger Passages
,”
ASME AES
,
10
, pp.
21
29
.
35.
Sottas
,
G.
,
1984
, “
Dynamic Adaptive Selection Between Explicit and Implicit Methods When Solving ODEs
,” Section de Mathématiques, University of Genève, Geneva, Switzerland.
36.
B. C.
Robertson
,
1987
, “
Detecting Stiffness With Explicit Runge–Kutta Formulas
,” Department of Computer Science, University of Toronto, Toronto, ON, Report No. 193/87.
37.
Keunings
,
R.
, and
Crochet
,
M. J.
,
1984
, “
Numerical Simulation of the Flow of a Viscoelastic Fluid Through an Abrupt Contraction
,”
J. Non-Newtonian Fluid Mech.
,
14
, pp.
279
299
.
38.
Pinho
,
F. T.
, and
Oliveira
,
P. J.
,
2000
, “
Axial Annular Flow of Non-Linear Viscoelastic Fluid an Analytical Solution
,”
J. Non-Newtonian Fluid Mech.
,
93
(
2–3
), pp.
325
333
.
You do not currently have access to this content.