The focus of this study is on serial and parallel configurations of a multistage thermoacoustic engines (TAE). Thermoacoustics integrates fluid dynamics, thermodynamics, and acoustics to explain the interactions existing between heat and sound. Considerable amounts of waste heat are released to the environment in everyday industrial processes. This waste heat cannot be reused due to its low temperature. One way for reusing some of this waste heat is to employ a thermoacoustic heat pump. TAEs can be driven by waste heat and are capable of supplying the power to drive the thermoacoustic heat pumps. However, due to the low temperature of this waste heat, single-stage TAEs cannot provide the required temperature lifts. Multistage TAEs are advantageous because they can provide sufficient temperature lifts. In this study, a computational fluid dynamics (CFD) simulation is carried out to understand the conversion process of heat to sound and study the nonlinear conjugation of unsteady heat release and acoustic disturbances. The two main parameters evaluated in this simulation are the initial pressure disturbance and the stack's temperature gradient. Their effects on actuating limit cycle oscillations are examined in a 2D numerical model. The numerical simulation results indicate that the pressure amplitude varies through alteration made in these mentioned parameters. The present numerical results are validated by previously published data.

References

1.
Rott
,
N.
,
1969
, “
Damped and Thermally Driven Acoustic Oscillations in Wide and Narrow Tubes
,”
Z. Angew. Math. Phys.
,
20
(
2
), pp.
230
243
.
2.
Rott
,
N.
,
1975
, “
Thermally Driven Acoustic Oscillations. Part ІІІ: Second-Order Heat Flux
,”
Z. Angew. Math. Phys.
,
26
(
1
), pp.
43
49
.
3.
Rott
,
N.
,
1980
, “
Thermoacoustics
,”
Adv. Appl. Mech.
,
20
, pp.
135
175
.
4.
Swift
,
G. W.
,
1995
, “
Thermoacoustic Engines and Refrigerators
,”
Phys. Today
,
48
(
7
), pp.
22
28
.
5.
Swift
,
G. W.
,
2003
, “
Thermoacoustic: A Unifying Perspective for Some Engines and Refrigerators
,”
J. Acoust. Soc. Am.
,
113
(
5
), pp.
2379
2381
.
6.
Hariharan
,
N. M.
,
Sivashanmugam
,
P.
, and
Kasthurirengan
,
S.
,
2013
, “
Influence of Operational and Geometrical Parameters on the Performance of Twin Thermoacoustic Prime Mover
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1183
1188
.
7.
Hariharan
,
N. M.
,
Sivashanmugam
,
P.
, and
Kasthurirengan
,
S.
,
2012
, “
Influence of Stack Geometry and Resonator Length on the Performance of Thermoacoustic Engine
,”
Appl. Acoust.
,
73
(
10
), pp.
1052
1058
.
8.
Kamble
,
B. V.
,
Kasthurirengan
,
S.
,
Kuzhiveli
,
B. T.
, and
Behera
,
U.
,
2013
, “
Experimental and Simulation Studies on the Performance of Standing Wave Thermoacoustic Prime Mover for Pulse Tube Refrigerator
,”
Int. J. Refrig.
,
36
(
8
), pp.
2410
2419
.
9.
Hariharan
,
N. M.
,
Sivashanmugam
,
P.
, and
Kasthurirengan
,
S.
,
2013
, “
Experimental Investigation of a Thermoacoustic Refrigerator Driven by a Standing Wave Twin Thermoacoustic Prime Mover
,”
Int. J. Refrig.
,
36
(
8
), pp.
2420
2425
.
10.
Worlikar
,
A. S.
,
Knio
,
O. M.
, and
Klein
,
R.
,
1998
, “
Numerical Simulation of a Thermoacoustic Refrigerator. II. Stratified Flow Around the Stack
,”
J. Comput. Phys.
,
144
(
2
), pp.
299
324
.
11.
Tasnim
,
S. H.
, and
Fraser
,
R. A.
,
2010
, “
Computation of the Flow and Thermal Fields in a Thermoacoustic Refrigerator
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
748
755
.
12.
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2013
, “
Modeling and Analysis of Flow, Thermal, and Energy Fields Within Stacks of Thermoacoustic Engines Filled With Porous Media
,”
Heat Transfer Eng.
,
34
(
1
), pp.
84
97
.
13.
Asgharian
,
B.
, and
Matveev
,
K. I.
,
2014
, “
Influence of Finite Heat Capacity of Solid Pins and Their Spacing on Thermoacoustic Performance of Transverse-Pin Stacks
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
593
598
.
14.
Matveev
,
K. I.
,
2010
, “
Thermoacoustic Energy Analysis of Transverse-Pin and Tortuous Stacks at Large Acoustic Displacements
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
1019
1025
.
15.
Nowak
,
I.
,
Rulik
,
S.
,
Wroblewski
,
W.
,
Nowak
,
G.
, and
Szwedowicz
,
J.
,
2014
, “
Analytical and Numerical Approach in the Simple Modelling of Thermoacoustic Engines
,”
Int. J. Heat Mass Transfer
,
77
, pp.
369
376
.
16.
Piccolo
,
A.
, and
Pistone
,
G.
,
2006
, “
Estimation of Heat Transfer Coefficients in Oscillating Flows: The Thermoacoustic Case
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1631
1642
.
17.
Pan
,
N.
,
Wang
,
S.
, and
Shen
,
C.
,
2014
, “
A Fundamental Study on Characteristic of Thermoacoustic Engine With Different Tilt Angles
,”
Int. J. Heat Mass Transfer
,
74
, pp.
228
237
.
18.
Nijeholt
,
J. A. L.
,
Tijani
,
M. E. H.
, and
Spoelstra
,
S.
,
2005
, “
Simulation of a Traveling-Wave Thermoacoustic Engine Using Computational Fluid Dynamics
,”
J. Acoust. Soc. Am.
,
118
(
4
), pp.
2265
2270
.
19.
Zink
,
F.
,
Vipperman
,
J.
, and
Schaefer
,
L.
,
2010
, “
CFD Simulation of a Thermoacoustic Engine With Coiled Resonator
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
226
229
.
20.
Zink
,
F.
,
Vipperman
,
J.
, and
Schaefer
,
L.
,
2010
, “
CFD Simulation of Thermoacoustic Cooling
,”
Int. Commun. Heat Mass Transfer
,
53
(
19–20
), pp.
3940
3946
.
21.
Yu
,
G.
,
Dai
,
W.
, and
Luo
,
E.
,
2010
, “
CFD Simulation of a 300 Hz Thermoacoustic Standing Wave Engine
,”
Cryogenics
,
50
(
9
), pp.
615
622
.
22.
Skaria
,
M.
,
Abdul Rasheed
,
K. K.
,
Shafi
,
K. A.
,
Kasthurirengan
,
S.
, and
Behera
,
U.
,
2015
, “
Simulation Studies on the Performance of Thermoacoustic Prime Movers and Refrigerator
,”
Comput. Fluids
,
111
, pp.
127
136
.
23.
Rayleigh
,
L.
,
1945
,
The Theory of Sound
,
Dover
,
New York
, p.
226
.
You do not currently have access to this content.