Thermal conductivity values of compressed boards made of ground Arachis hypogea husk and Vigna unguiculata husk as binder at different percentage compositions at a temperature of 303 K were investigated using steady-state method. Other thermal properties including specific heat capacity, density, thermal absorptivity, and diffusivity values were also estimated for the prepared samples. Comparative studies of the determined values for the board at different proportions or ratios of combination of A. hypogeal ground husk with V. unguiculata ground husk reveal that thermal conductivity value decreases with an increase in the percentage content of A. hypogea husk contents. A fitting polynomial regression analysis reveals a correlation coefficient of 99.6%. The range of thermal conductivity values falls within the range of conventional good thermal insulators. Thus, the husks are potential ecofriendly raw materials for insulation board for cold building design and other thermal envelops.

References

1.
Szelagowski
,
H.
,
Arvantidis
,
I.
, and
Seetharaman
,
S.
,
1999
, “
Effective Thermal Conductivity of Porous Strontium Oxide and Strontium Carbonate Sample
,”
J. Appl. Phys.
,
85
(
1
), pp.
193
198
.
2.
Ajibola
,
K.
, and
Onobanjo
,
B. O.
,
1995
, “
Investigation of Cocos nucifera as a Potential Insulator for Buildings
,”
Renewable Energy
,
6
(
1
), pp.
81
85
.
3.
Akpabio
,
L. E.
,
Ekpe
,
S. D.
,
Etuk
,
S. E.
, and
Essien
,
K. E.
,
2001
, “
Thermal Properties of Oil Palm Fibres
,”
Global J. Pure Appl. Sci.
,
7
(
3
), pp.
575
578
.
4.
Etuk
,
S. E.
,
Akpabio
,
I. O.
, and
Udo
,
E. M.
,
2003
, “
Comparison of the Thermal Properties of Clay Samples as Potential Walling Material for Naturally Cooled Building Design
,”
J. Environ. Sci.
,
15
(
1
), pp.
65
68
.
5.
Etuk
,
S. E.
, and
Akpabio
,
L. E.
,
2004
, “
Investigation of Ceiba pentandra Cotton as a Potential Thermal Insulators
,”
JORMAR
,
1
(
1
), pp.
4
10
.
6.
Beck
,
A.
,
Heinemann
,
M.
, and
Fircke
,
J. E.
,
2004
, “
Thermal Transport in Straw Insulation
,”
J. Therm. Env. Build. Sci.
,
3
(
5
), pp.
227
234
.
7.
Twidell
,
J.
, and
Weir
,
T.
,
1990
,
Renewable Energy Resources
,
E & FN Spon
,
London
, p.
418
.
8.
Sayigh
,
A. A. M.
,
1978
, “
The Technology of Flat Plate Collector
,”
Solar Energy Conversion: An Introductory Course
,
University of Waterloo Ontario
,
Canada
, p.
108
9.
Etuk
,
S. E.
,
Akpabio
,
L. E.
, and
Akpan
,
I. O.
,
2010
, “
Comparative Study of Thermal Transport in Zea mays Straw and Zea mays Heartwood (Cork) Boards
,”
Therm. Sci.
,
14
(
1
), pp.
31
38
.
10.
Etuk
,
S. E.
,
2012
, “
Investigation Into Some Thermophysical Properties of Some Materials of Plant Product: Elaeis guineensis, Raphia hookeri, Musanga cecropioides, Macaranga barteri, Cocos nucifera and Zea mays
,” Higher National Diploma (HND) thesis, Nigerian Institute of Science Laboratory Technology, Ibadan, Nigeria.
11.
Bouguerra
,
A.
,
Laurent
,
J. P.
,
Goual
,
M. S.
, and
Queneudec
,
M.
,
1997
, “
The Measurement of the Thermal Conductivity of Solid Aggregates Using the Transient Plane Method Technique
,”
J. Phys. D: Appl. Phys.
,
30
(
20
), pp.
2900
2904
.
12.
Li
,
B.-C.
, and
Zhang
,
S.-Y.
,
1997
, “
The Effect of Interface Resistance on Thermal Wave Propagation in Multi-Layered Samples
,”
J. Phys. D: Appl. Phys.
,
30
(
10
), pp.
1447
1454
.
13.
Suleiman
,
B. M.
,
Gustavsson
,
M.
,
Karawack
,
E.
, and
Lundein
,
A.
,
1997
, “
Thermal Properties of Lithium Sulphate
,”
J. Phys. D: Appl. Phys.
,
30
(
18
), pp.
2553
2560
.
14.
Jaramillo
,
O. A.
,
del Rio
,
J. A.
, and
Huelsz
,
G.
,
1999
, “
A Thermal Study of Optical Fibres Transmitting Concentrated Solar Energy
,”
J. Phys. D: Appl. Phys.
,
32
(
9
), pp.
1000
1005
.
15.
Galovic
,
S.
, and
Dramicanin
,
M. D.
,
1999
, “
Numerical Simulation of Photothermal Effects in Solids With Inhomogeneous Thermal Properties
,”
J. Phys. D: Appl. Phys.
,
33
(
13
), pp.
1511
1516
.
16.
Bourguerra
,
A.
,
1999
, “
Temperature and Moisture Dependence on the Thermal Conductivity of Wood-Cement-Based Composite: Experimental and Theoretical Analysis
,”
J. Phys. D: Appl. Phys.
,
32
(
21
), pp.
2797
2803
.
17.
Bourguerra
,
A.
,
1999
, “
Predication of Effective Thermal Conductivity of Moist Wood Concrete
,”
J. Phys. D: Appl. Phys.
,
32
(
12
), pp.
1407
1414
.
18.
Fiege
,
G. B. M.
,
Altes
,
A.
,
Heiderhoff
,
R.
, and
Balk
,
L. J.
,
1999
, “
Quantitative Thermal Conductivity Measurements With Nanometre Resolution
,”
J. Phys. D: Appl. Phys.
,
32
(
5
), pp.
L13
L17
.
19.
Ronchi
,
C.
,
Sheindlin
,
M.
, and
Musella
,
M.
,
1999
, “
Thermal Conductivity of Uranium Dioxide up to 2900 K From Simultaneous Measurement of the Heat Capacity and Thermal Diffusivity
,”
J. Appl. Phys.
,
85
(
2
), pp.
776
789
.
20.
Silva
,
T. S.
,
Alves
,
A. S.
,
Pepe
,
I.
,
Tsuzuki
,
H.
,
Nakamura
,
O.
, and
d'Angular Neto
,
M. M. F.
,
1998
, “
Thermal Diffusivity of Lead Iodide
,”
J. Appl. Phys.
,
83
(
11
), pp.
6193
6195
.
21.
Hutchinson
,
J.
, and
Daiziel
,
J. M.
,
1973
,
Flora of West Africa
, 2nd ed., Vol.
2
,
Whye Friars Press
,
London
, p.
567
.
22.
Umoren
,
S. A.
,
Obot
,
I. B.
,
Akpabio
,
L. E.
, and
Etuk
,
S. E.
,
2008
, “
Adsorption and Corrotive Inhibitive Properties of Vigna unguiculata in Alkaline and Acidic Media
,”
Pigm. Resin Technol.
,
37
(
2
), pp.
98
105
.
23.
United States of America Forest Products Laboratory
,
1974
,
Wood Handbook: Wood as an Engineering Material
,
U. S. Government Printing Office
,
Washington, DC
.
24.
Walker
,
J. E. L.
,
1972
,
The Biology of Plants Phenolics
,
Edward Arnold
,
London
, pp.
60
61
.
25.
Adeosun
,
B. F.
, and
Olaofe
,
O.
,
2002
, “
Thermodynamic Parameters of Stretching and Thermal Conductivity of Loaded Natural Rubber
,”
J. Chem. Soc. Niger.
,
27
(
2
), pp.
128
129
.
26.
Jackson
,
R. D.
, and
Taylor
,
S. A.
,
1965
, “
Heat Transfer Method of Soil Analysis
,”
Agron. Monogr.
,
9
(
1
), pp.
349
360
.
27.
Etuk
,
S. E.
,
Akpabio
,
L. E.
, and
Akpabio
,
K. E.
,
2005
, “
Determination of Thermal Properties of Cocos nucifera Trunk for Predicting Temperature Variation With Its Thickness
,”
Arabian J. Sci. Eng.
,
30
(
1B
), pp.
121
126
.
28.
Walton
,
J. A.
,
1970
,
Woodwork in Theory and Practice
, 4th ed.,
Australian Publishing
,
Sydney, Australia
.
29.
Okeke
,
P. N.
,
Osuwa
,
J. C.
,
Menkiti
,
A. I.
,
Ofuegbu
,
C. O.
,
Okeke
,
C. E.
, and
Emereole
,
H. U.
,
1991
,
Preliminary Practical Physics Manual
(
Nigerian University Physics Series
, Vol.
2
),
Africana-FEP
,
Nigeria
, pp.
112
113
.
30.
Tyler
,
F.
,
1971
,
A Laboratory Manual of Physics
, 4th ed. (S I Version),
Edward Arnold
,
London
, pp.
112
113
.
31.
Ekpe
,
S. D.
,
Akpabio
,
L. E.
, and
Eno
,
E. E.
,
1996
, “
Thermal Properties of Soil Samples in Uyo Local Government Area of Akwa Ibom State, Nigeria
,”
Global J. Pure Appl. Sci.
,
2
(
1
), pp.
45
52
.
32.
Liebe
,
J.
,
Kang
,
H.
,
Haupt
,
L.
,
Mandal
,
P.
,
Medvedeva
,
I. V.
,
Rao
,
G. H.
,
Barner
,
K.
,
Poddar
,
A.
,
Murugura
,
P.
,
Fischer
,
R.
,
Gmelin
,
E.
,
Gommert
,
E.
,
Helmott
,
R. V.
, and
Wecker
,
J.
,
1998
, “
Heat Diffusivity of Nd1−xSrxMno3−δ La1−xCaxMno3δ Compounds
,”
J. Appl. Phys.
,
83
(
11
), pp.
7148
7150
.
33.
Khatry
,
A. B.
,
Sodha
,
M. S.
, and
Malik
,
M. A. S.
,
1978
, “
Periodic Variation of Ground Temperature With Depth
,”
Sol. Energy
,
20
(
5
), pp.
425
427
.
34.
Sodha
,
M. S.
,
Goyal
,
I. C.
,
Kaushiks
,
C.
,
Tiwari
,
G. N.
, and
Seth
,
A. K.
,
1997
,
Periodic Heat Transfer With Temperature Dependent Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
22
(
5
), pp.
281
777
.
36.
Tozluoglu
,
A.
,
2008
, “
Utilizing Peanut Husk (Arachis hypogea)
,”
Bioresour. Technol.
,
99
(
13
), pp.
5590
5594
.
37.
Marsh
,
R. W.
, and
Olivo
,
C. T.
,
1979
,
Basics of Refrigeration
, 2nd ed.,
Van Nostrand Reinhold
,
New York
, p.
126
.
You do not currently have access to this content.