The three-dimensional hyperbolic heat conduction equation is solved to obtain the analytical solution of the temperature rise at the contact area between an asperity and a moving smooth flat. The present analyses can provide an efficient method to avoid the problem of being difficult to give the correct boundary conditions for the frictional heat conduction at an asperity. The mean contact area of an asperity which is needed in the heat transfer analysis is here obtained by a new fractal model. This fractal model is established from the findings of the size distribution functions developed for surface asperities operating at the elastic, elastoplastic and fully plastic regimes. The expression of the temperature rise parameter Tf (T: Temperature rise, f: friction coefficient) is thus derived without specifying the deformation style of a contact load. It can be applied to predict the Tf variations due to the continuous generations of the frictional heat flow rate in a period of time. The combination of a small fractal dimension and a large topothesy of a surface is apt to raise the contact load, and thus resulting in a large Tf value. A significant difference in the behavior exhibited in the parameters of temperature rise and temperature rise gradient is present between the Fourier and hyperbolic heat conductions; Fluctuations in the thermal parameters are exhibited only when the specimen material has a large value of the relaxation time parameter.

1.
Blok
,
H.
, 1970, “
The Postulate about the Constancy of Scoring Temperature
,” Interdisciplinary Approach to the Lubrication, NASA, SP-237.
2.
Jaeger
,
J. C.
, 1942, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
J. Proc. R. Soc. N. S. W.
0035-9173,
56
, pp.
203
204
.
3.
Archard
,
J. F.
, 1958–1959, “
The Temperature of Rubbing Surfaces
,”
Wear
0043-1648,
2
, pp.
438
455
.
4.
Ling
,
F. F.
, 1969, “
On Transient Temperatures at Sliding Interface
,”
ASME J. Lubr. Technol.
0022-2305,
91
, pp.
397
405
.
5.
Ling
,
F. F.
, and
Pu
,
S. L.
, 1964, “
Probable Interface Temperatures of Solids in Sliding Contact
,”
Mechanisms of Solid Friction
, edited by
Bryant
,
P. J.
,
Lavik
,
M.
, and
Salomon
,
G.
,
Elsevier
, Amsterdam, pp.
23
34
.
6.
Vick
,
B.
, and
Furey
,
M. J.
, 2001, “
A Basic Theoretical Study of the Temperature Rise in Sliding Contact with Multiple Contacts
,”
Tribol. Int.
0301-679X,
34
, pp.
823
829
.
7.
Furey
,
M. J.
, 1964, “
Surface Temperatures in Sliding Contact
,”
ASLE Trans.
0569-8197,
7
(
2
), pp.
133
146
.
8.
Gecim
,
B.
, and
Winer
,
W. O.
, 1985, “
Transient Temperatures in the Vicinity of an Asperity Contact
,”
ASME J. Tribol.
0742-4787,
107
, pp.
333
342
.
9.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1994, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
0742-4787,
116
, pp.
812
822
.
10.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1994, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
0742-4787,
116
, pp.
824
832
.
11.
Herivel
,
J.
, 1980, Joseph Fourier: face aux objections contre sa theorie de la chaleur, Bibliotheque Nationale, Paris.
12.
Volklein
,
F.
, and
Kessler
,
E.
, 1986, “
Analysis of the Lattice Thermal Conductivity of Thin-Films by Means of a Modified Mayadas Shatzkes Model, the Case of Bismuth Films
,”
Thin Solid Films
0040-6090,
142
, pp.
169
181
.
13.
Flik
,
M. I.
,
Choi
,
B. I.
,
Anderson
,
A. C.
, and
Westerheim
,
A. C.
, 1992, “
Thermal Analysis and Control for Sputtering Deposition of High-Tc Superconducting Films
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
255
263
.
14.
Mirmira
,
S. R.
, and
Fletcher
,
L. S.
, 1998, “
Review of the Thermal Conductivity of Thin Films
,”
J. Thermophys. Heat Transfer
0887-8722,
12
, pp.
121
131
.
15.
Vernotte
,
P.
, 1958, “
Les Paradoxes de la Theorie Continue de l’equation De La Chaleur
,”
C. R. Acad. Sci. Hebd Seances Acad. Sci. D
0567-655X,
246
(
22
), Paris, pp.
3154
3155
.
16.
Vernotte
,
P.
, 1958, “
La veritable equation de la chaleur
,”
C. R. Acad. Sci. Hebd Seances Acad. Sci. D
0567-655X,
247
(
23
), Paris, pp.
2103
2105
.
17.
Cattaneo
,
M. C.
, 1958, “
Sur une forme de l’equation de la chaleur eliminant le paradoxe d’une propagation instantanee
,”
C. R. Acad. Sci. Hebd Seances Acad. Sci. D
0567-655X,
247
(
4
), pp.
431
433
.
18.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1989, “
Heat Waves
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
41
73
.
19.
Ling
,
F. F.
, 1987, “
Scaling Law for Contoured Length of Engineering Surface
,”
J. Appl. Phys.
0021-8979,
62
(
6
), pp.
2570
2572
.
20.
Ling
,
F. F.
, 1989, “
The Possible Role of Fractal Geometry in Tribology
,”
STLE Tribol. Trans.
1040-2004,
32
(
4
), pp.
497
505
.
21.
Majumdar
,
A.
, and
Tien
,
C. L.
, 1989, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
0043-1648,
136
, pp.
316
327
.
22.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1990, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
0742-4787,
112
, pp.
205
216
.
23.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
, pp.
1
11
.
24.
Bhushan
,
B.
, and
Majumdar
,
A.
, 1992, “
Elastic-Plastic Contact Model for Bifacial Surfaces
,”
Wear
0043-1648,
153
, pp.
53
64
.
25.
Zahouani
,
H.
,
Vargiolu
,
R.
, and
Loubet
,
J. L.
,
, 1998, “
Fractal Models of Surfaces Topography and Contact Mechanics
,”
Math. Comput. Modell.
0895-7177,
28
(
4–8
), pp.
517
534
.
26.
Bhushan
,
B.
, and
Dugger
,
M. Tt.
, 1990, “
Real Contact Area Measurements on Magnetic Rigid Disks
,”
Wear
0043-1648,
137
, pp.
41
50
.
27.
Chung
,
J. C.
, and
Lin
,
J. F.
, 2004, “
A Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
126
, pp.
646
654
.
28.
Ling
,
F. F.
,
Lai
,
W. M.
, and
Lucca
,
D. A.
, 2002,
Fundamentals of Surface Mechanics
,
Springer-Verlag
, New York.
29.
Boley
,
B. A.
, and
Weiner
,
J. H.
, 1960,
Theory of Thermal Stresses
,
John Wiley & Sons
, New York.
30.
Majumdar
,
A.
, 1998, “
Microscale Energy Transport in Solid
,” in
Microscale Energy Transport
, edited by
Tien
C. L.
,
Majumdar
,
A.
, and
Gemer
,
F. M.
,
Taylor & Francis
, pp.
3
94
.
31.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
7
16
.
32.
Bhushan
,
B.
, 1987, “
Magnetic Head-Media Interface Temperature. Part 1—Analysis, Part 2—Application of Magnetic Tapes
,”
ASME J. Tribol.
0742-4787,
109
, pp.
243
251
and 252–256.
33.
Johnson
,
K. L.
, 1987,
Contact Mechanics
,
Cambridge University Press
, Cambridge, England.
34.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surface
,”
ASME J. Tribol.
0742-4787,
109
, pp.
257
263
.
35.
Yan
,
W.
, and
Komvopoulos
,
K.
, 1998, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
0021-8979,
84
(
7
), pp.
3617
3624
.
36.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
37.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. P.
, 1979, “
Strongly Anisotropic Rough Surface
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
15
20
.
38.
Bhushan
,
B.
, 1995,
Handbook of Micro/Nano Tribology
,
CRC Press
, Boca Raton, FL.
39.
Bertman
,
B.
, and
Sandiford
,
D. J.
, 1970, “
Second Sound in Solid Helium
,”
Sci. Am.
0036-8733,
222
, pp.
92
101
.
You do not currently have access to this content.