A lubrication theory that includes the effects of electrokinetics and surface microstructure is developed. A porous layer attached to the impermeable substrate is used to model the microstructure on a bearing surface. The Brinkman-extended Darcy equations and Stokes equations are modified by considering the electrical body force and utilized to model the flow in porous media and fluid film, respectively. The stress jump boundary conditions on the porous media/fluid film interface and the effects of viscous shear and electric double layer (EDL) are also considered when deriving the modified Reynolds equation. Under the usual assumptions of lubrication and Debye–Hückel approximation for low surface potential, the velocity distributions, the apparent viscosity, and the modified Reynolds equation are then derived. The apparent viscosity is expressed explicitly as functions of the Debye length, the electroviscosity, the charge density, the stress jump parameter, and the porous parameters (permeability, porosity, and porous film thickness). The considerations of EDL near the interface and the charge density of the flow in the porous media increase the apparent viscosity. The existence of porous film also increases the apparent viscosity as well. Both effects are important for flow within microspacing and lubrication problems. The apparent viscosity and the performance of 1D slider bearings are analyzed and discussed. The results show that the apparent viscosity and the load capacity increase as the permeability decreases, the stress jump parameter decreases, the charge density increases, the inverse Debye length decreases, or the porosity decreases.

1.
Hough
,
D. B.
, and
Ottewill
,
R. H.
, 1983, “
Direct Measurement of the Pressure of Electrical Double Layer Interaction Between Charged Surfaces
,”
Prog. Colloid Polym. Sci.
0340-255X,
68
, pp.
101
112
.
2.
Elton
,
G. A. H.
, 1948, “
Electroviscosity. II. Experimental Demonstration of the Electroviscous Effect
,”
Proc. R. Soc. London, Ser. A
0950-1207,
194
(
1037
), pp.
296
301
.
3.
Pagonis
,
D. N.
, and
Nassiopoulou
,
A. G.
, 2007, “
Formation of Confined Macroporous Silicon Membranes on Pre-Defined Areas on the Si Substrate
,”
Phys. Status Solidi A
0031-8965,
204
(
5
), pp.
1335
1339
.
4.
Kaltsas
,
G.
,
Pagonis
,
D. N.
, and
Nassiopoulou
,
A. G.
, 2003, “
Planar CMOS Compatible Process for the Fabrication of Buried Microchannels in Silicon, Using Porous-Silicon Technology
,”
J. Microelectromech. Syst.
1057-7157,
12
(
6
), pp.
863
872
.
5.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2003, “
Liquid Flow in Microchannels: Experimental Observations and Computational Analyses of Microfluidics Effects
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
568
579
.
6.
Drott
,
J.
,
Lindström
,
K.
,
Rosengren
,
L.
, and
Laurell
,
T.
, 1997, “
Porous Silicon as the Carrier Matrix in Microstructured Enzyme Reactors Yielding High Enzyme Activities
,”
J. Micromech. Microeng.
0960-1317,
7
(
1
), pp.
14
23
.
7.
Scales
,
N.
, and
Tait
,
R. N.
, 2006, “
Modeling Electroosmotic and Pressure Driven Flow in Porous Microfluidic Devices: Zeta Potential and Porosity Changes Near the Channel Walls
,”
J. Chem. Phys.
0021-9606,
125
, p.
094714
.
8.
Kumar
,
V.
, 1980, “
Porous Metal Bearings—A Critical Review
,”
Wear
0043-1648,
63
, pp.
271
287
.
9.
Murti
,
P. R. K.
, 1973, “
Lubrication of Narrow Porous Bearings With Arbitrary Wall Thickness
,”
ASME J. Lubr. Technol.
0022-2305,
95
, pp.
511
517
.
10.
Cusano
,
C.
, 1972, “
Lubrication of Porous Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
94
, pp.
69
73
.
11.
Beavers
,
G. S.
, and
Joseph
,
D. D.
, 1967, “
Boundary Conditions at a Naturally Permeable Wall
,”
J. Fluid Mech.
0022-1120,
30
, pp.
197
207
.
12.
Brinkman
,
H. C.
, 1947, “
A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles
,”
Appl. Sci. Res., Sect. A
0365-7132,
1
, pp.
27
34
.
13.
Neale
,
G.
, and
Nader
,
W.
, 1974, “
Practical Significance of Brinkman’s Extension of Darcy’s Law: Coupled Parallel Flows Within a Channel and a Bounding Porous Medium
,”
Can. J. Chem. Eng.
0008-4034,
52
, pp.
475
478
.
14.
Lin
,
J. R.
, and
Hwang
,
C. C.
, 1994, “
Static and Dynamic Characteristics of Long Porous Journal Bearings: Use of the Brinkman-Extended Darcy Model
,”
J. Phys. D
0022-3727,
27
, pp.
634
643
.
15.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
, 1995, “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid—I. Theoretical Development
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2635
2646
.
16.
Ochoa-Tapia
,
J. A.
, and
Whitaker
,
S.
, 1995, “
Momentum Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid—II. Comparison With Experiment
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2647
2655
.
17.
Li
,
W. -L.
, 1999, “
Derivation of Modified Reynolds Equation—A Porous Media Model
,”
ASME J. Tribol.
0742-4787,
121
, pp.
823
829
.
18.
Li
,
W. -L.
,
Lin
,
J. -W.
,
Lee
,
S. -C.
, and
Chen
,
M. -D.
, 2002, “
Effects of Roughness on Rarefied Gas Flow in Long Microtubes
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
149
156
.
19.
Chen
,
M. -D.
,
Chang
,
K. -M.
,
Lin
,
J. -W.
, and
Li
,
W. -L.
, 2002, “
Lubrication of Journal Bearings—Influence of Stress Jump Condition at the Porous-Media/Fluid Film Interface
,”
Tribol. Int.
0301-679X,
35
(
5
), pp.
287
295
.
20.
Bike
,
S. G.
, and
Prieve
,
D. C.
, 1990, “
Electrohydrodynamic Lubrication With Thin Double Layers
,”
J. Colloid Interface Sci.
0021-9797,
136
(
1
), pp.
95
112
.
21.
Zhang
,
B.
, and
Umehara
,
N.
, 1998, “
Hydrodynamic Lubrication Theory Considering Electric Double Layer for Very Thin Water Film Lubrication of Ceramics
,”
JSME Int. J., Ser. C
1340-8062,
41
(
20
), pp.
285
290
.
22.
Bai
,
S.
, and
Huang
,
P.
, 2004, “
Influence of Electric Double Layer on Lubrication
,”
Journal of Wuhan University of Technology-Materials Science Edition
,
19
, pp.
66
68
.
23.
Wong
,
P. L.
,
Huang
,
P.
, and
Meng
,
Y.
, 2003, “
The Effects of the Electric Double Layer on a Very Thin Water Lubricating Film
,”
Tribol. Lett.
1023-8883,
14
(
3
), pp.
197
203
.
24.
Li
,
D. Q.
, 2004,
Electrokinetics in Microfluidics
,
Elsevier
,
New York
.
25.
Jordi
,
L.
,
Iliev
,
C.
, and
Fischer
,
T. E.
, 2004, “
Lubrication of Silicon Nitride and Silicon Carbide by Water: Running In, Wear and Operation of Sliding Bearings
,”
Tribol. Lett.
1023-8883,
17
(
3
), pp.
367
376
.
26.
Jahanmir
,
S.
,
Ozmen
,
Y.
, and
Ives
,
L. K.
, 2004, “
Water Lubrication of Silicon Nitride in Sliding
,”
Tribol. Lett.
1023-8883,
17
(
3
), pp.
409
417
.
27.
Phillips
,
B. S.
, and
Zabinski
,
J. S.
, 2004, “
Ionic Liquid Lubrication Effects on Ceramics in a Water Environment
,”
Tribol. Lett.
1023-8883,
17
(
3
), pp.
533
541
.
28.
Corbett
,
J.
,
Almond
,
R. J.
,
Stephenson
,
D. J.
, and
Kwan
,
Y. B. P.
, 1998, “
Porous Ceramic Water Hydrostatic Bearings for Improved for Accuracy Performance
,”
CIRP Ann.
0007-8506,
47
(
1
), pp.
467
470
.
29.
Ishikawa
,
H.
, and
Yogo
,
T.
, “
Ceramic Dynamic-Pressure Bearing, Motor Having Bearing, Hard Disk Drive, and Polygon Scanner
,” U.S. Patent No. 6,619,847 B1.
30.
Li
,
W. -L.
, and
Chu
,
H. -M.
, 2004, “
Derivation of Modified Reynolds Equation for Coupled Stress Fluids—A Porous Media Model
,”
Acta Mech.
0001-5970,
171
(
3–4
), pp.
189
202
.
31.
Butt
,
H. J.
,
Graf
,
K.
, and
Kappl
,
M.
, 2004,
Physics and Chemistry of Interfaces
,
Wiley
,
New York
.
32.
Tichy
,
J. A.
, 1995, “
A Porous Media Model for Thin Film Lubrication
,”
ASME J. Tribol.
0742-4787,
117
, pp.
16
21
.
33.
Cameron
,
A.
, 1981,
Basic Lubrication Theory
, 3rd ed.,
Horwood Ltd.
,
Ellis
, p.
71
.
You do not currently have access to this content.