A simple method to determine the frictional interaction between a carbon nanotube (CNT) and a substrate is analyzed for feasibility. In this technique an atomic force microscope (AFM) tip is used to drag a CNT along a substrate. Then the deformed shape of the CNT can be viewed either with the AFM or in a scanning electron microscope. An analysis of the steady-state deformed shape allows the determination of the frictional interactions, which occurred during dragging. It is important to quantify these interactions in a variety of potential applications of nanotechnology. In one such example, a CNT based nanoswitch consists of a CNT bridging over a trench. Actuation of the CNT causes it to stretch and can lead to partial slip at the interface. This slip causes hysteresis, which has been observed in the mechanical actuation of a CNT bridge. In this paper continuum level modeling of the frictional interaction is used to determine the relationship between the steady-state deformed shape of the CNT and the frictional interaction, which occurred between the CNT and substrate during dragging. The model and analysis indicate that this method should be feasible for CNTs with aspect ratios approximately in the 100–250 range.

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Hertel
,
T.
,
Martel
,
R.
, and
Avouris
,
P.
, 1998, “
Manipulation of Individual Carbon Nanotubes and Their Interaction With Surfaces
,”
J. Phys. Chem. B
1089-5647,
102
, pp.
910
915
.
3.
Falvo
,
M. R.
,
Clary
,
G.
,
Helser
,
A.
,
Paulson
,
S.
,
Taylor
,
R. M.
, II
,
Chi
,
V.
,
Brooks
,
F. P.
, Jr.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1998, “
Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes
,”
Microsc. Microanal.
1431-9276,
4
, pp.
504
512
.
4.
Falvo
,
M. R.
,
Taylor
,
R. M.
, II
,
Helser
,
A.
,
Chi
,
V.
,
Brooks
,
F. P.
, Jr.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1999, “
Nanometer-Scale Rolling and Sliding of Carbon Nanotubes
,”
Nature (London)
0028-0836,
397
, pp.
236
238
.
5.
Schwarz
,
U. D.
,
Zwörner
,
O.
,
Köster
,
P.
, and
Wiesendanger
,
R.
, 1997, “
Quantitative Analysis of the Frictional Properties of Solid Materials at Low Loads, I: Carbon Compounds
,”
Phys. Rev. B
0163-1829,
56
, pp.
6987
6996
.
6.
Falvo
,
M. R.
,
Steele
,
J.
,
Taylor
,
R. M.
, II
, and
Superfine
,
R.
, 2000, “
Evidence of Commensurate Contact and Rolling Motion: AFM Manipulation Studies of Carbon Nanotubes on HOPG
,”
Tribol. Lett.
1023-8883,
9
, pp.
73
76
.
7.
Falvo
,
M. R.
, and
Superfine
,
R.
, 2000, “
Mechanics and Friction at the Nanometer Scale
,”
J. Nanopart. Res.
1388-0764,
2
, pp.
237
248
.
8.
Miura
,
K.
,
Ishikawa
,
M.
,
Kitanishi
,
R.
,
Yoshimura
,
M.
,
Ueda
,
K.
,
Tatsumi
,
Y.
, and
Minami
,
N.
, 2001, “
Bundle Structure and Sliding of Single-Walled Carbon Nanotubes Observed by Frictional-Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
832
834
.
9.
Whittaker
,
J. D.
,
Minot
,
E. D.
,
Tanenbaum
,
D. M.
,
McEuen
,
P. L.
, and
Davis
,
R. C.
, 2006, “
Measurement of Adhesion Force Between Carbon Nanotubes and a Silicon Dioxide Substrate
,”
Nano Lett.
1530-6984,
6
, pp.
953
957
.
10.
Hertel
,
T.
,
Walkup
,
R. E.
, and
Avouris
,
P.
, 1998, “
Deformation of Carbon Nanotubes by Surface Van Der Waals Forces
,”
Phys. Rev. B
0163-1829,
58
, pp.
13870
13873
.
11.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, 2004, “
Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
789
821
.
12.
Buldum
,
A.
, and
Lu
,
J. P.
, 1999, “
Atomic Scale Sliding and Rolling of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
83
, pp.
5050
5053
.
13.
Cheng
,
M.
, and
Lu
,
Y.
, 2006, “
Friction Between Carbon Nanotube and Graphite Using Molecular Dynamics
,”
Proceedings of the IEEE Conference on Emerging Technologies – Nanoelectronics
, pp.
169
172
.
14.
Adams
,
G. G.
,
Nagappan
,
P.
, and
McGruer
,
N. E.
, 2008, “
Continuum Modeling and Analysis of the Frictional Interaction Between a CNT and a Substrate During Dragging
,”
ASME International Mechanical Engineering Congress and Exposition
, Boston, MA, Oct. 31–Nov. 6, Paper No. IMECE2008-68884.
15.
Frisch-Fay
,
R.
, 1962,
Flexible Bars
,
Butterworths
,
London, UK
, Chap. 2.
16.
Nakayama
,
Y.
, 2007, “
Plasticity of Carbon Nanotubes: Aiming at Their Use in Nanosized Devices
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
46
, pp.
5005
5014
.
You do not currently have access to this content.