Abstract

The analysis of the dynamic response of elastohydrodynamic lubricated contacts has often invoked a universal law for lubricant density–pressure dependence, even though the densities of many lubricants exhibit a substantial deviation from this widely adopted law. The current work investigates the influence of real lubricant density–pressure behavior on the stiffness of elastohydrodynamic lubricated contacts. It is shown that accounting for the real lubricant density–pressure dependence is crucial for an accurate estimation of the oil film stiffness, under steady-state considerations. The influence on the overall stiffness of the contact is found to be negligible though. Finally, an analytical correction procedure is provided, allowing a correction of oil film stiffness predictions that are based on the universal law for lubricant density–pressure dependence (or any other unrealistic law), to account for the real lubricant density–pressure response.

References

1.
Wijnant
,
Y. H.
,
Venner
,
C. H.
,
Larsson
,
R.
, and
Eriksson
,
P.
,
1999
, “
Effects of Structural Vibrations on the Film Thickness in an EHL Circular Contact
,”
ASME J. Tribol.
,
121
(
2
), pp.
259
264
. 10.1115/1.2833929
2.
Nonato
,
F.
, and
Cavalca
,
K. L.
,
2010
, “
On the Non-Linear Dynamic Behavior of Elastohydrodynamic Lubricated Point Contact
,”
J. Sound Vib.
,
329
(
22
), pp.
4656
4671
. 10.1016/j.jsv.2010.05.014
3.
Nonato
,
F.
, and
Cavalca
,
K. L.
,
2014
, “
An Approach for Including the Stiffness and Damping of Elastohydrodynamic Point Contacts in Deep Groove Ball Bearing Equilibrium Models
,”
J. Sound Vib.
,
333
(
25
), pp.
6960
6978
. 10.1016/j.jsv.2014.08.011
4.
Qin
,
W.
,
Chao
,
J.
, and
Duan
,
L.
,
2015
, “
Study on Stiffness of Elastohydrodynamic Line Contact
,”
Mech. Mach. Theory
,
86
, pp.
36
47
. 10.1016/j.mechmachtheory.2014.12.001
5.
Zhang
,
Y.
,
Liu
,
H.
,
Zhu
,
C.
,
Liu
,
M.
, and
Song
,
C.
,
2016
, “
Oil Film Stiffness and Damping in an Elastohydrodynamic Lubrication Line Contact-Vibration
,”
J. Mech. Sci. Technol.
,
30
(
7
), pp.
3031
3039
. 10.1007/s12206-016-0611-x
6.
Tsuha
,
N. A. H.
,
Nonato
,
F.
, and
Cavalca
,
K. L.
,
2017
, “
Formulation of a Reduced Order Model for the Stiffness on Elastohydrodynamic Line Contacts Applied to Cam-Follower Mechanism
,”
Mech. Mach. Theory
,
113
, pp.
22
39
. 10.1016/j.mechmachtheory.2017.03.002
7.
Wiegert
,
B.
,
Hetzler
,
H.
, and
Seemann
,
W.
,
2013
, “
A Simplified Elastohydrodynamic Contact Model Capturing the Nonlinear Vibration Behaviour
,”
Tribol. Int.
,
59
, pp.
79
89
. 10.1016/j.triboint.2012.02.002
8.
Zhou
,
C.
,
Xiao
,
Z.
,
Chen
,
S.
, and
Han
,
X.
,
2017
, “
Normal and Tangential Oil Film Stiffness of Modified Spur Gear With Non-Newtonian Elastohydrodynamic Lubrication
,”
Tribol. Int.
,
109
, pp.
319
327
. 10.1016/j.triboint.2016.12.045
9.
Zhou
,
C.
, and
Xiao
,
Z.
,
2018
, “
Stiffness and Damping Models for the Oil Film in Line Contact Elastohydrodynamic Lubrication and Applications in the Gear Drive
,”
Appl. Math. Modell.
,
61
, pp.
634
649
. 10.1016/j.apm.2018.05.012
10.
Xiao
,
Z.
,
Zhou
,
C.
,
Chen
,
S.
, and
Li
,
Z.
,
2019
, “
Effects of Oil Film Stiffness and Damping on Spur Gear Dynamics
,”
Nonlinear Dyn.
,
96
(
1
), pp.
145
159
. 10.1016/j.apm.2018.05.012
11.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1959
, “
A Numerical Solution of the Elastohydrodynamic Problem
,”
IMechE. Part C: J. Mech. Eng. Sci.
,
1
(
1
), pp.
6
15
.
12.
Kleinschmidt
,
R. V.
,
Bradbury
,
D.
, and
Mark
,
M.
,
1953
,
Viscosity and Density of Over Forty Lubricating Fluids of Known Composition at Pressures to 150,000 psi and Temperatures to 425 F
,
ASME
,
New York
.
13.
Venner
,
C. H.
, and
Bos
,
J.
,
1994
, “
Effects of Lubricant Compressibility on the Film Thickness in EHL Line and Circular Contacts
,”
Wear
,
173
(
1–2
), pp.
151
165
. 10.1016/0043-1648(94)90268-2
14.
Habchi
,
W.
, and
Bair
,
S.
,
2013
, “
Quantitative Compressibility Effects in Thermal Elastohydrodynamic Circular Contacts
,”
ASME J. Tribol.
,
135
(
1
), p.
011502
. 10.1115/1.4023082
15.
Habchi
,
W.
, and
Issa
,
J. S.
,
2017
, “
An Exact and General Model Order Reduction Technique for the Finite Element Solution of Elastohydrodynamic Lubrication Problems
,”
ASME J. Tribol.
,
139
(
5
), p.
051501
. 10.1115/1.4035154
16.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), p.
021501
. 10.1115/1.2842246
17.
Hertz
,
H.
,
1881
, “
Uber die Berührung Fester Elastischer Körper
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
. 10.1515/crll.1882.92.156
18.
Reynolds
,
O.
,
1886
, “
On the Theory of the Lubrication and Its Application to Mr Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc.
,
177
, pp.
157
234
. 10.1098/rstl.1886.0005
19.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G. E.
,
2012
, “
Stabilized Fully-Coupled Finite Elements for Elastohydrodynamic Lubrication Problems
,”
Adv. Eng. Softw.
,
46
(
1
), pp.
4
18
. 10.1016/j.advengsoft.2010.09.010
20.
Habchi
,
W.
,
2018
,
Finite Element Modeling of Elastohydrodynamic Lubrication Problems
,
Wiley
,
Chichester
.
21.
Roelands
,
C. J. A.
,
1966
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,” Ph.D. thesis,
Technische Hogeschool Delft
,
Delft, The Netherlands
.
22.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
,
1954
,
Molecular Theory of Gases and Liquids
,
Wiley
,
New York
.
23.
Moes
,
H.
,
1992
, “
Optimum Similarity Analysis With Applications to Elastohydrodynamic Lubrication
,”
Wear
,
159
(
1
), pp.
57
66
. 10.1016/0043-1648(92)90286-h
You do not currently have access to this content.