Abstract

Graphite-based materials and hydrothermal synthetic magnesium silicate hydroxide (MSH) had shown outstanding performances as lubricant additives. In this paper, microcrystalline graphite oxide-magnesium silicate hydroxide (MGO-MSH) composite additives using pre-oxidized MGO as one of the precursors were prepared at a mild hydration condition, and their tribological properties in poly-alpha-olefin oil (PAO 10) were demonstrated by a four-ball tester. The tribological results showed that the optimal concentration of MGO-MSH in oil was 0.3 wt% under 600 N, 600 rpm. Meanwhile, the average wear scar diameter of the ball samples tested in composite-suspending oil was reduced by 36.3% compared with that obtained by pure PAO 10. By means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectra, and X-ray photoelectron spectroscopy (XPS), it was verified that MGO was involved in the synthesis of MSH, and MSH was anchored on MGO during the hydrothermal process. In addition, it was confirmed that carbon-containing tribo-film was formed on the smooth wear region of the wear scar and was of excellent anti-oxidation wear properties.

References

1.
Holmberg
,
K.
,
Andersson
,
P.
, and
Erdemir
,
A.
,
2012
, “
Global Energy Consumption Due to Friction in Passenger Cars
,”
Tribol. Int.
,
47
, pp.
221
234
.
2.
Holmberg
,
K.
,
Andersson
,
P.
,
Nylund
,
N. O.
,
Makela
,
K.
, and
Erdemir
,
A.
,
2014
, “
Global Energy Consumption Due to Friction in Trucks and Buses
,”
Tribol. Int.
,
78
, pp.
94
114
.
3.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2017
, “
Influence of Tribology on Global Energy Consumption, Costs and Emissions
,”
Friction
,
5
(
3
), pp.
263
284
.
4.
Holmberg
,
K.
,
Siilasto
,
R.
,
Laitinen
,
T.
,
Andersson
,
P.
, and
Jasberg
,
A.
,
2013
, “
Global Energy Consumption Due to Friction in Paper Machines
,”
Tribol. Int.
,
62
, pp.
58
77
.
5.
Hu
,
Y. W.
,
Wang
,
Y. X.
,
Zeng
,
Z. X.
,
Zhao
,
H. C.
,
Li
,
J. L.
,
Ge
,
X. W.
,
Wang
,
L. P.
,
Xue
,
Q.
,
Mao
,
C. L.
, and
Chen
,
S. J.
,
2019
, “
BLG-RGO: A Novel Nanoadditive for Water-Based Lubricant
,”
Tribol. Int.
,
135
, pp.
277
286
.
6.
Liu
,
Y. R.
,
Hu
,
K. H.
,
Hu
,
E. Z.
,
Guo
,
J. H.
,
Han
,
C. L.
, and
Hu
,
X. G.
,
2017
, “
Double Hollow MoS2 Nano-Spheres: Synthesis, Tribological Properties, and Functional Conversion From Lubrication to Photocatalysis
,”
Appl. Surf. Sci.
,
392
, pp.
1144
1152
.
7.
Xu
,
Y.
,
Hu
,
E. Z.
,
Hu
,
K. H.
,
Xu
,
Y. F.
, and
Hu
,
X. G.
,
2015
, “
Formation of an Adsorption Film of MoS2 Nanoparticles and Dioctyl Sebacate on a Steel Surface for Alleviating Friction and Wear
,”
Tribol. Int.
,
92
, pp.
172
183
.
8.
Du
,
S. N.
,
Sun
,
J. L.
, and
Wu
,
P.
,
2018
, “
Preparation, Characterization and Lubrication Performances of Graphene Oxide-TiO2 Nanofluid in Rolling Strips
,”
Carbon
,
140
, pp.
338
351
.
9.
Leon
,
A.
,
Reuquen
,
P.
,
Garin
,
C.
,
Segura
,
R.
,
Vargas
,
P.
,
Zapata
,
P.
, and
Orihuela
,
P. A.
,
2017
, “
FTIR and Raman Characterization of TiO2 Nanoparticles Coated With Polyethylene Glycol as Carrier for 2-Methoxyestradiol
,”
Appl. Sci.
,
7
(
1
), p.
49
.
10.
Leon
,
C. P.
,
Kador
,
L.
,
Peng
,
B.
, and
Thelakkat
,
M.
,
2006
, “
Characterization of the Adsorption of ru-bpy Dyes on Mesoporous TiO2 Films With UV-Vis, Raman, and FTIR Spectroscopies
,”
J. Phys. Chem. B
,
110
(
17
), pp.
8723
8730
.
11.
Qiang
,
R.
,
Hu
,
L.
,
Hou
,
K.
,
Wang
,
J.
, and
Yang
,
S.
,
2019
, “
Water-Soluble Graphene Quantum Dots as High-Performance Water-Based Lubricant Additive for Steel/Steel Contact
,”
Tribol. Lett.
,
67
(
2
).
12.
Zhang
,
W.
,
Zhou
,
M.
,
Zhu
,
H.
,
Tian
,
Y.
,
Wang
,
K.
,
Wei
,
J.
,
Ji
,
F.
,
Li
,
X.
,
Li
,
Z.
,
Zhang
,
P.
, and
Wu
,
D.
,
2011
, “
Tribological Properties of Oleic Acid-Modified Graphene as Lubricant Oil Additives
,”
J. Phys. D Appl. Phys.
,
44
(
20
), p.
205303
.
13.
Zhai
,
W. Z.
,
Srikanth
,
N.
,
Kong
,
L. B.
, and
Zhou
,
K.
,
2017
, “
Carbon Nanomaterials in Tribology
,”
Carbon
,
119
, pp.
150
171
.
14.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2014
, “
Graphene: A New Emerging Lubricant
,”
Mater. Today
,
17
(
1
), pp.
31
42
.
15.
Song
,
H. J.
,
Wang
,
Z. Q.
, and
Yang
,
J.
,
2016
, “
Tribological Properties of Graphene Oxide and Carbon Spheres as Lubricating Additives
,”
Appl. Phys. A: Mater. Sci. Process.
,
122
(
10
), p.
933
.
16.
Chang
,
Q. Y.
,
Rudenko
,
P.
,
Miller
,
D. J.
,
Wen
,
J. G.
,
Berman
,
D.
,
Zhang
,
Y. P.
,
Arey
,
B.
,
Zhu
,
Z. H.
, and
Erdemir
,
A.
,
2017
, “
Operando Formation of an Ultra-Low Friction Boundary Film From Synthetic Magnesium Silicon Hydroxide Additive
,”
Tribol. Int.
,
110
, pp.
35
40
.
17.
Chang
,
Q. Y.
,
Wang
,
B.
, and
Gao
,
K.
,
2019
, “
Pressure-Dependent Anti-Wear Mechanisms of Synthetic Magnesium Silicate Hydroxide Nanoparticles
,”
Tribol. Int.
,
135
, pp.
230
236
.
18.
Wang
,
B.
,
Chang
,
Q. Y.
,
Gao
,
K.
,
Fang
,
H. R.
,
Qing
,
T.
, and
Zhou
,
N. N.
,
2018
, “
The Synthesis of Magnesium Silicate Hydroxide With Different Morphologies and the Comparison of Their Tribological Properties
,”
Tribol. Int.
,
119
, pp.
672
679
.
19.
Gao
,
K.
,
Chang
,
Q. Y.
,
Wang
,
B.
,
Zhou
,
N. N.
, and
Qing
,
T.
,
2018
, “
The Tribological Performances of Modified Magnesium Silicate Hydroxide as Lubricant Additive
,”
Tribol. Int.
,
121
, pp.
64
70
.
20.
Gao
,
K.
,
Chang
,
Q. Y.
,
Wang
,
B.
,
Zhou
,
N. N.
, and
Qing
,
T.
,
2018
, “
The Purification and Tribological Property of the Synthetic Magnesium Silicate Hydroxide Modified by Oleic Acid
,”
Lubr. Sci.
,
30
(
7
), pp.
377
385
.
21.
Qi
,
X. W.
,
Jia
,
Z. N.
,
Yang
,
Y. L.
, and
Fan
,
B. L.
,
2011
, “
Characterization and Auto-Restoration Mechanism of Nanoscale Serpentine Powder as Lubricating Oil Additive Under High Temperature
,”
Tribol. Int.
,
44
(
7–8
), pp.
805
810
.
22.
Yu
,
H. L.
,
Xu
,
Y.
,
Shi
,
P. J.
,
Wang
,
H. M.
,
Zhao
,
Y.
,
Xu
,
B. S.
, and
Bai
,
Z. M.
,
2010
, “
Tribological Behaviors of Surface-Coated Serpentine Ultrafine Powders as Lubricant Additive
,”
Tribol. Int.
,
43
(
3
), pp.
667
675
.
23.
Li
,
H.
,
Chen
,
L.
,
Zhang
,
Y.
,
Ji
,
X.
,
Chen
,
S.
,
Song
,
H.
,
Li
,
C.
, and
Tang
,
H.
,
2014
, “
Synthesis of MoSe2/Reduced Graphene Oxide Composites With Improved Tribological Properties for Oil-Based Additives
,”
Cryst. Res. Technol.
,
49
(
4
), pp.
204
211
.
24.
Fu
,
H.
,
Fan
,
X.
,
Li
,
W.
,
Zhu
,
M.
,
Peng
,
J.
, and
Li
,
H.
,
2017
, “
In Situ Modified Multilayer Graphene Toward High-Performance Lubricating Additive
,”
RSC Adv.
,
7
(
39
), pp.
24399
24409
.
25.
Guo
,
X.
,
Pu
,
M.
,
Yang
,
Z.
, and
Wang
,
J.
,
2019
, “
Synthesis, Structure and Tribological Properties of Graphene/LaF3 Composites as Water-Based Lubricant Additives
,”
Mocaxue Xuebao
,
39
(
1
), pp.
35
42
.
26.
Peng
,
L.
,
Xu
,
Z.
,
Liu
,
Z.
,
Wei
,
Y. Y.
,
Sun
,
H. Y.
,
Li
,
Z.
,
Zhao
,
X. L.
, and
Gao
,
C.
,
2015
, “
An Iron-Based Green Approach to 1-h Production of Single-Layer Graphene Oxide
,”
Nat. Commun.
,
6
, p.
5716
.
27.
He
,
H. Y.
,
Klinowski
,
J.
,
Forster
,
M.
, and
Lerf
,
A.
,
1998
, “
A New Structural Model for Graphite Oxide
,”
Chem. Phys. Lett.
,
287
(
1–2
), pp.
53
56
.
28.
Buchsteiner
,
A.
,
Lerf
,
A.
, and
Pieper
,
J.
,
2006
, “
Water Dynamics in Graphite Oxide Investigated With Neutron Scattering
,”
J. Phys. Chem. B
,
110
(
45
), pp.
22328
22338
.
29.
Ren
,
P. G.
,
Yan
,
D. X.
,
Ji
,
X.
,
Chen
,
T.
, and
Li
,
Z. M.
,
2011
, “
Temperature Dependence of Graphene Oxide Reduced by Hydrazine Hydrate
,”
Nanotechnology
,
22
(
5
), p.
055705
.
30.
Lin
,
Y.
,
Jin
,
J.
, and
Song
,
M.
,
2011
, “
Preparation and Characterisation of Covalent Polymer Functionalized Graphene Oxide
,”
J. Mater. Chem.
,
21
(
10
), pp.
3455
3461
.
31.
B.
,
Wang
,
Q.
,
Chang
,
K.
,
Gao
, and
K
,
Wang
,
2020
, “
Hydrothermal Synthesized Magnesium Silicate Hydroxide/Graphene Nanocomposites in a MgO-SiO2-Graphene-H2O Alkaline System and its Application in Anti-Wear Additive Toward Infinitesimal Wear
,”
Trib. Int.
,
148
.
32.
Huh
,
S. H.
,
2014
, “
X-Ray Diffraction of Multi-Layer Graphenes: Instant Measurement and Determination of the Number of Layers
,”
Carbon
,
78
, pp.
617
621
.
33.
Sanes
,
J.
,
Aviles
,
M. D.
,
Saurin
,
N.
,
Espinosa
,
T.
,
Carrion
,
F. J.
, and
Bermudez
,
M. D.
,
2017
, “
Synergy Between Graphene and Ionic Liquid Lubricant Additives
,”
Tribol. Int.
,
116
, pp.
371
382
.
34.
Fan
,
K.
,
Liu
,
J.
,
Wang
,
X.
,
Liu
,
Y.
,
Lai
,
W. C.
,
Gao
,
S. S.
,
Qin
,
J. Q.
, and
Liu
,
X. Y.
,
2018
, “
Towards Enhanced Tribological Performance as Water-Based Lubricant Additive: Selective Fluorination of Graphene Oxide at Mild Temperature
,”
J. Colloid Interface Sci.
,
531
, pp.
138
147
.
35.
Stinespring
,
C. D.
, and
Wormhoudt
,
J. C.
,
1989
, “
Surface Studies Relevant To Silicon-Carbide Chemical Vapor-Deposition
,”
J. Appl. Phys.
,
65
(
4
), pp.
1733
1742
.
36.
Rudenko
,
A. N.
,
Keil
,
F. J.
,
Katsnelson
,
M. I.
, and
Lichtenstein
,
A. I.
,
2011
, “
Graphene Adhesion on Mica: Role of Surface Morphology
,”
Phys. Rev. B
,
83
(
4
).
37.
Lui
,
C. H.
,
Liu
,
L.
,
Mak
,
K. F.
,
Flynn
,
G. W.
, and
Heinz
,
T. F.
,
2009
, “
Ultraflat Graphene
,”
Nature
,
462
(
7271
), pp.
339
341
.
38.
Elomaa
,
O.
,
Singh
,
V. K.
,
Iyer
,
A.
,
Hakala
,
T. J.
, and
Koskinen
,
J.
,
2015
, “
Graphene Oxide in Water Lubrication on Diamond-Like Carbon vs. Stainless Steel High-Load Contacts
,”
Diam. Relat. Mater.
,
52
, pp.
43
48
.
39.
Huang
,
H. D.
,
Tu
,
J. P.
,
Gan
,
L. P.
, and
Li
,
C. Z.
,
2006
, “
An Investigation on Tribological Properties of Graphite Nanosheets as Oil Additive
,”
Wear
,
261
(
2
), pp.
140
144
.
40.
Cusano
,
C.
, and
Sliney
,
H. E.
,
1982
, “
Dynamics of Solid Dispersions in Oil During the Lubrication of Point Contacts, Part II. Molybdenum-Disulfide
,”
ASLE Trans.
,
25
(
2
), pp.
190
197
.
41.
Hanesch
,
M.
,
2009
, “
Raman Spectroscopy of Iron Oxides and (oxy)Hydroxides at Low Laser Power and Possible Applications in Environmental Magnetic Studies
,”
Geophys. J. Int.
,
177
(
3
), pp.
941
948
.
42.
Shang
,
W. J.
,
Cai
,
T.
,
Zhang
,
Y. X.
,
Liu
,
D.
, and
Liu
,
S. G.
,
2018
, “
Facile One Pot Pyrolysis Synthesis of Carbon Quantum Dots and Graphene Oxide Nanomaterials: All Carbon Hybrids as Eco-Environmental Lubricants for Low Friction and Remarkable Wear-Resistance
,”
Tribol. Int.
,
118
, pp.
373
380
.
43.
Zhang
,
L. L.
,
Pu
,
J. B.
,
Wang
,
L. P.
, and
Xue
,
Q. J.
,
2014
, “
Frictional Dependence of Graphene and Carbon Nanotube in Diamond-Like Carbon/Ionic Liquids Hybrid Films in Vacuum
,”
Carbon
,
80
, pp.
734
745
.
44.
Zhang
,
H.
, and
Chang
,
Q. Y.
,
2019
, “
Friction-Induced Rehybridization of Hydrothermal Amorphous Carbon in Magnesium Silicate Hydroxide-Based Nanocomposite
,”
Carbon
,
155
, pp.
650
659
.
45.
Ye
,
X. Y.
,
Ma
,
L. M.
,
Yang
,
Z. G.
,
Wang
,
J. Q.
,
Wang
,
H. G.
, and
Yang
,
S. R.
,
2016
, “
Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-Based Lubricant Additive
,”
ACS Appl. Mater. Interfaces
,
8
(
11
), pp.
7483
7488
.
You do not currently have access to this content.