Abstract

Sand particles have been used since the early stages of the railway industry to increase adhesion at the wheel–rail contact. However, there is a limited understanding of how sand particle characteristics affect the tribological performance of the wheel–rail contact. In this work, the high-pressure torsion test used as a small-scale simulation of the interface is numerically modeled using the discrete element method (DEM). The DEM model is then utilized to investigate the effect of different particle characteristics on the frictional performance of wheel–rail contact which can provide more insight into micromechanical observations. The effects of various particle characteristics including their size, their number, the number of fragments the particles break into, and the parameters defining the behavior of the bonds between particle fragments on the coefficient of traction (COT) are systematically investigated. Results show that, in dry contacts, the coefficient of traction decreases when the size or number of sand particles increases. This can be attributed to the formation of weak shear bands between the fragments. Further investigation is needed for wet- and leaf-contaminated contacts. It is also found that the COT is more sensitive to the stiffness of the bond between the fragments of a broken particle compared to the strength of the bond. A limiting value for bond strength was identified, beyond which the sand particles exhibited ductile behavior rather than the expected brittle fracture. The findings from this study can be useful for future research on adhesion management in wheel–rail contact and the modeling approach can be scaled up to the full contact.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Gray
,
P.
,
2018
, “
T1107 Sander Trials Dissemination Event
,” RSSB Report.
2.
Rail Accident Investigation Branch
,
2007
, “
Autumn Adhesion Investigation Part 3: Review of Adhesion-Related Incidents Autumn 2005
,” RAIB Report.
3.
Fulford
,
C. R.
,
2004
, “
Review of Low Adhesion Research (T354)
,” RSSB Report.
4.
Marshall
,
M. B.
,
Lewis
,
R.
,
Dwyer-Joyce
,
R. S.
,
Olofsson
,
U.
, and
Björklund
,
S.
,
2006
, “
Experimental Characterization of Wheel-Rail Contact Patch Evolution
,”
ASME J. Tribol.
,
128
(
3
), pp.
493
504
.
5.
Deng
,
X.
,
Ni
,
Y.-Q.
, and
Liu
,
X.
,
2022
, “
Numerical Analysis of Transient Wheel-Rail Rolling/Slipping Contact Behaviors
,”
ASME J. Tribol.
,
144
(
10
), p.
101503
.
6.
Luccidi
,
Y.
,
Rezende
,
A. B.
,
Fonseca
,
S. T.
, and
Mei
,
P. R.
,
2022
, “
Study of the Running-In Period in the Twin-Disc Wear Test Using Steel From a Class C Forged Railway Wheel
,”
ASME J. Tribol.
,
144
(
11
), p.
114501
.
7.
Amuzuga
,
P.
, and
Depale
,
B.
,
2022
, “
Open Gear Rolling Contact Fatigue Life Prediction by a Numerical Approach
,”
ASME J. Tribol.
,
144
(
11
), p.
111501
.
8.
Folorunso
,
M. O.
,
Watson
,
M.
,
Martin
,
A.
,
Whittle
,
J. W.
,
Sutherland
,
G.
, and
Lewis
,
R.
,
2023
, “
A Machine Learning Approach for Real-Time Wheel-Rail Interface Friction Estimation
,”
ASME J. Tribol.
,
145
(
9
), p.
091102
.
9.
Zhu
,
Y.
,
Wang
,
W.
,
Lewis
,
R.
,
Yan
,
W.
,
Lewis
,
S. R.
, and
Ding
,
H.
,
2019
, “
A Review on Wear Between Railway Wheels and Rails Under Environmental Conditions
,”
ASME J. Tribol.
,
141
(
12
), p.
120801
.
10.
Beagley
,
T. M.
,
McEwen
,
I. J.
, and
Pritchard
,
C.
,
1975
, “
Wheel/Rail Adhesion—Boundary Lubrication by Oily Fluids
,”
Wear
,
31
(
1
), pp.
77
88
.
11.
Beagley
,
T. M.
, and
Pritchard
,
C.
,
1975
, “
Wheel/Rail Adhesion—The Overriding Influence of Water
,”
Wear
,
35
(
2
), pp.
299
313
.
12.
Buckley-Johnstone
,
L. E.
,
Lewis
,
R.
,
Six
,
K.
, and
Trummer
,
G.
,
2016
, “
Modelling and Quantifying the Influence of Water on Wheel/Rail Adhesion Levels
,” RSSB Report.
13.
Buckley-Johnstone
,
L. E.
,
Trummer
,
G.
,
Voltr
,
P.
,
Meierhofer
,
A.
,
Six
,
K.
,
Fletcher
,
D. I.
, and
Lewis
,
R.
,
2019
, “
Assessing the Impact of Small Amounts of Water and Iron Oxides on Adhesion in the Wheel/Rail Interface Using High Pressure Torsion Testing
,”
Tribol. Int.
,
135
(
6
), pp.
55
64
.
14.
Ishizaka
,
K.
,
Lewis
,
S. R.
, and
Lewis
,
R.
,
2017
, “
The Low Adhesion Problem Due to Leaf Contamination in the Wheel/Rail Contact: Bonding and Low Adhesion Mechanisms
,”
Wear
,
378
(
5
), pp.
183
197
.
15.
Rail Safety and Standards Board
,
2013
, “
Performance and Installation Criteria for Sanding Systems (T797)
,” RSSB Report.
16.
Arias-Cuevas
,
O.
, and
Li
,
Z.
,
2011
, “
Field Investigations Into the Adhesion Recovery in Leaf-Contaminated Wheel–Rail Contacts With Locomotive Sanders
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
225
(
5
), pp.
443
456
.
17.
Khalladi
,
A.
, and
Elleuch
,
K.
,
2016
, “
Tribological Behavior of Wheel-Rail Contact Under Different Contaminants Using Pin-On-Disk Methodology
,”
ASME J. Tribol.
,
139
(
1
), p.
011102
.
18.
Arias-Cuevas
,
O.
,
Li
,
Z.
,
Lewis
,
R.
, and
Gallardo-Hernández
,
E. A.
,
2010
, “
Laboratory Investigation of Some Sanding Parameters to Improve the Adhesion in Leaf-Contaminated Wheel-Rail Contacts
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
224
(
3
), pp.
139
157
.
19.
Arias-Cuevas
,
O.
,
Li
,
Z.
, and
Lewis
,
R.
,
2011
, “
A Laboratory Investigation on the Influence of the Particle Size and Slip During Sanding on the Adhesion and Wear in the Wheel-Rail Contact
,”
Wear
,
271
(
1–2
), pp.
14
24
.
20.
Wang
,
W. J.
,
Liu
,
T. F.
,
Wang
,
H. Y.
,
Liu
,
Q. Y.
,
Zhu
,
M. H.
, and
Jin
,
X. S.
,
2014
, “
Influence of Friction Modifiers on Improving Adhesion and Surface Damage of Wheel/Rail Under Low Adhesion Conditions
,”
Tribol. Int.
,
75
(
7
), pp.
16
23
.
21.
Huang
,
W.
,
Cao
,
X.
,
Wen
,
Z.
,
Wang
,
W.
,
Liu
,
Q.
,
Zhu
,
M.
, and
Jin
,
X.
,
2016
, “
A Subscale Experimental Investigation on the Influence of Sanding on Adhesion and Rolling Contact Fatigue of Wheel/Rail Under Water Condition
,”
ASME J. Tribol.
,
139
(
1
), p.
011401
.
22.
Zobel
,
F. G. R.
,
1974
, “
Development of Remedies for Poor Adhesion (IM-ADH-019)
,” British Rail Research.
23.
Evans
,
M.
,
Skipper
,
W. A.
,
Buckley-Johnstone
,
L.
,
Meierhofer
,
A.
,
Six
,
K.
, and
Lewis
,
R.
,
2021
, “
The Development of a High Pressure Torsion Test Methodology for Simulating Wheel/Rail Contacts
,”
Tribol. Int.
,
156
(
4
), p.
106842
.
24.
Skipper
,
W. A.
,
Nadimi
,
S.
,
Chalisey
,
A.
, and
Lewis
,
R.
,
2019
, “
Particle Characterisation of Rail Sands for Understanding Tribological Behaviour
,”
Wear
,
432
(
8
), p.
202960
.
25.
Skipper
,
W. A.
,
Nadimi
,
S.
,
Watson
,
M.
,
Chalisey
,
A.
, and
Lewis
,
R.
,
2023
, “
Quantifying the Effect of Particle Characteristics on Wheel/Rail Adhesion & Damage Through High Pressure Torsion Testing
,”
Tribol. Int.
,
179
(
1
), p.
108190
.
26.
Evans
,
M. D.
,
Lee
,
Z. S.
,
Harmon
,
M.
,
Six
,
K.
,
Meierhofer
,
A.
,
Stock
,
R.
,
Gutsulyak
,
D. V.
, and
Lewis
,
R.
,
2023
, “
Top-of-Rail Friction Modifier Performance Assessment: High Pressure Torsion Testing; Creep Force Modelling and Field Validation
,”
Wear
,
532
(
11
), p.
205073
.
27.
Skipper
,
W.
,
Meierhofer
,
A.
,
Chalisey
,
A.
,
Six
,
K.
, and
Lewis
,
R.
,
2024
, “
Generation of Sanded Creep Curves Using the Extended Creep Force Model With High Pressure Torsion Data
,”
Wear
,
542
(
4
), p.
205278
.
28.
Meierhofer
,
A.
,
2015
, “
A New Wheel-Rail Creep Force Model Based on Elasto-Plastic Third Body Layers
,”
Ph.D. dissertation
,
Graz University of Technology
,
Styria, Austria
.
29.
Purcell
,
L.
, and
Lightoller
,
A.
,
2018
, “
Trial of Sander Configurations and Sand Laying Rates (T1107)
,” RSSB Report.
30.
Fischer
,
M.
,
Haselsteiner
,
K.
,
Szekely
,
F.
,
Heinz
,
S.
, and
Kröger
,
F.
,
2020
, “
Mehr Mobilität auf der Schiene: Erhöhung der Transportkapazität Durch Optimierung des Kraftschlusses
,” ZEVrail.
31.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Géotechnique
,
29
(
1
), pp.
47
65
.
32.
Thornton
,
C.
,
2015
,
Granular Dynamics, Contact Mechanics and Particle System Simulations, A DEM Study, Particle Technology Series
,
Springer International Publishing
,
Cham
.
33.
Hertz
,
H.
,
1882
, “
Ueber die Berührung Fester Elastischer Körper
,”
J Reine Angew. Math.
,
1882
(
92
), pp.
156
171
.
34.
Mindlin
,
R. D.
,
2021
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.
35.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
2021
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
(
3
), pp.
327
344
.
36.
Tsuji
,
Y.
,
Tanaka
,
T.
, and
Ishida
,
T.
,
1992
, “
Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe
,”
Powder Technol.
,
71
(
3
), pp.
239
250
.
37.
Sakaguchi
,
H.
,
Ozaki
,
E.
, and
Igarashi
,
T.
,
1993
, “
Plugging of the Flow of Granular Materials During the Discharge From a Silo
,”
Int. J. Mod. Phys. B
,
7
(
09n10
), pp.
1949
1963
.
39.
Skipper
,
W.
,
2021
, “
Sand Particle Entrainment and its Effects on the Wheel/Rail Interface
,”
Ph.D. dissertation
,
The University of Sheffield
,
Sheffield, South Yorkshire
.
40.
Skipper
,
W.
,
Nadimi
,
S.
, and
Lewis
,
R.
,
2021
, “
Sand Consist Change for Improved Track Circuit Performance (COF-UOS-03)
,” RSSB Report.
41.
Kowalczyk
,
D.
,
2017
, “
Analysis of the Causes of the Cracks in the Thermit Welds of the Tram Rails Type 60R2
,”
10th Conference on Terotechnology
,
Kielce, Poland
,
Oct. 18–19
, pp.
54
60
.
42.
Li
,
Y.
,
Xu
,
Y.
, and
Thornton
,
C.
,
2005
, “
A Comparison of Discrete Element Simulations and Experiments for 'Sandpiles' Composed of Spherical Particles
,”
Powder Technol.
,
160
(
3
), pp.
219
228
.
43.
O’Sullivan
,
C.
,
2011
,
Particulate Discrete Element Modelling: A Geomechanics Perspective
,
CRC Press
,
London
.
44.
Behjani
,
M. A.
,
Rahmanian
,
N.
,
Fardina bt Abdul Ghani
,
N.
, and
Hassanpour
,
A.
,
2017
, “
An Investigation on Process of Seeded Granulation in a Continuous Drum Granulator Using DEM
,”
Adv. Powder Technol.
,
28
(
10
), pp.
2456
2464
.
45.
Hærvig
,
J.
,
Kleinhans
,
U.
,
Wieland
,
C.
,
Spliethoff
,
H.
,
Jensen
,
A. L.
,
Sørensen
,
K.
, and
Condra
,
T. J.
,
2017
, “
On the Adhesive JKR Contact and Rolling Models for Reduced Particle Stiffness Discrete Element Simulations
,”
Powder Technol.
,
319
(
9
), pp.
472
482
.
46.
Washino
,
K.
,
Chan
,
E. L.
, and
Tanaka
,
T.
,
2018
, “
DEM With Attraction Forces Using Reduced Particle Stiffness
,”
Powder Technol.
,
325
(
2
), pp.
202
208
.
47.
Wang
,
Y.
,
Mora
,
P.
, and
Liang
,
Y.
,
2022
, “
Calibration of Discrete Element Modeling: Scaling Laws and Dimensionless Analysis
,”
Particuology
,
62
(
3
), pp.
55
62
.
48.
Wang
,
P.
, and
Arson
,
C.
,
2016
, “
Discrete Element Modeling of Shielding and Size Effects During Single Particle Crushing
,”
Comput. Geotech.
,
78
(
9
), pp.
227
236
.
49.
Fu
,
R.
,
Hu
,
X.
, and
Zhou
,
B.
,
2017
, “
Discrete Element Modeling of Crushable Sands Considering Realistic Particle Shape Effect
,”
Comput. Geotech.
,
91
(
11
), pp.
179
191
.
50.
Wu
,
M.
,
Wang
,
J.
, and
Zhao
,
B.
,
2022
, “
DEM Modeling of One-Dimensional Compression of Sands Incorporating Statistical Particle Fragmentation Scheme
,”
Can. Geotech. J.
,
59
(
1
), pp.
144
157
.
51.
Potyondy
,
D. O.
, and
Cundall
,
P. A.
,
2004
, “
A Bonded-Particle Model for Rock
,”
Int. J. Rock Mech. Min. Sci
,
41
(
8
), pp.
1329
1364
.
52.
Metzger
,
M. J.
, and
Glasser
,
B. J.
,
2012
, “
Numerical Investigation of the Breakage of Bonded Agglomerates During Impact
,”
Powder Technol.
,
217
(
2
), pp.
304
314
.
53.
Schilde
,
C.
,
Burmeister
,
C. F.
, and
Kwade
,
A.
,
2014
, “
Measurement and Simulation of Micromechanical Properties of Nanostructured Aggregates Via Nanoindentation and DEM-Simulation
,”
Powder Technol.
,
259
(
6
), pp.
1
13
.
54.
Budynas
,
R. G.
,
Nisbett
,
J. K.
, and
Shigley
,
J. E.
,
2015
,
Shigleys Mechanical Engineering Design
,
McGraw-Hill Education
,
New York
.
55.
Six
,
K.
,
Meierhofer
,
A.
,
Trummer
,
G.
,
Bernsteiner
,
C.
,
Marte
,
C.
,
Müller
,
G.
,
Luber
,
B.
,
Dietmaier
,
P.
, and
Rosenberger
,
M.
,
2017
, “
Plasticity in Wheel-Rail Contact and Its Implications on Vehicle-Track Interaction
,”
Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit
,
231
(
5
), pp.
558
569
.
You do not currently have access to this content.