Graphical Abstract Figure

Experimental, Analytical, and Numerical Analyses of Slurry Erosion Resistance of Austenitic 1.4301 Stailess steel

Graphical Abstract Figure

Experimental, Analytical, and Numerical Analyses of Slurry Erosion Resistance of Austenitic 1.4301 Stailess steel

Close modal

Abstract

The degradation of 1.4301 (AISI 304, X5CrNi18-10) stainless steel with two different impact angles (30 deg and 90 deg) has been investigated using a slurry pot tester. Spherical solid particles were used in the experiment. The impact angle significantly influenced the erosion resistance of 1.4301 steel. Tests conducted at an impact angle of 30 deg showed a higher erosion rate of approximately 91%. The test results showed that with a normal impact angle, the final and subsurface hardness were higher. Numerical analyses of contact stresses were carried out based on Hertz's theory. The calculation results were compared with the simulation results, showing a low error level (0.70–4.63%), depending on the analyzed parameter, i.e., Hertzian stress or maximum shear stress. The numerical results confirm the significant dependence of the erosion resistance on the impact angle. It has been found that the tallest peak height decreased with increasing hardness and impact angle. Scanning electron microscopic analysis showed that after the erosion tests, indentations, craters, microcutting, and microploughing were observed.

References

1.
Buszko
,
M. H.
, and
Krella
,
A. K.
,
2019
, “
An Influence of Factors of Flow Condition, Particle and Material Properties on Slurry Erosion Resistance
,”
Adv. Mater. Sci.
,
19
(
2
), pp.
28
53
.
2.
Krella
,
A. K.
,
Buszko
,
M. H.
, and
Gajowiec
,
G.
,
2020
, “
Degradation of Ferritic X10CrAlSi18 Stainless Steel Caused by Slurry
,”
Eng. Fail. Anal.
,
116
, p.
104696
.
3.
Nguyen
,
Q. B.
,
Lim
,
C. Y. H.
,
Nguyen
,
V. B.
,
Wan
,
Y. M.
,
Nai
,
B.
,
Zhang
,
Y. W.
, and
Gupta
,
M.
,
2014
, “
Slurry Erosion Characteristics and Erosion Mechanisms of Stainless Steel
,”
Tribol. Int.
,
79
, pp.
1
7
.
4.
Grewal
,
H. S.
,
Arora
,
H. S.
,
Agrawal
,
A.
,
Singh
,
H.
, and
Mukherjee
,
S.
,
2013
, “
Slurry Erosion of Thermal Spray Coatings: Effect of Sand Concentration
,”
Procedia Eng.
,
68
, pp.
484
490
.
5.
Mondal
,
J.
,
Das
,
K.
, and
Das
,
S.
,
2022
, “
The Effect of Microstructure and Mechanical Properties on the Slurry Erosion Behavior of Carbide-Free Bainitic and Martensitic Steel
,”
Wear
,
504–505
(
January
), p.
204422
.
6.
Buszko
,
M. H.
, and
Krella
,
A. K.
,
2017
, “
Slurry Erosion—Design of Test Devices
,”
Adv. Mater. Sci.
,
17
(
2
), pp.
5
17
.
7.
Abouel-Kasem
,
Al-Bukhaiti
,
M. A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
,
2009
, “
Fractal Characterization of Slurry Eroded Surfaces at Different Impact Angles
,”
ASME J. Tribol.
,
131
(
3
), p.
031601
.
8.
Al-Bukhaiti
,
M. A.
,
Ahmed
,
S. M.
,
Badran
,
F. M. F.
, and
Emara
,
K. M.
,
2007
, “
Effect of Impingement Angle on Slurry Erosion Behaviour and Mechanisms of 1017 Steel and High-Chromium White Cast Iron
,”
Wear
,
262
(
9–10
), pp.
1187
1198
.
9.
Shitole
,
P. P.
,
Gawande
,
S. H.
,
Desale
,
G. R.
, and
Nandre
,
B. D.
,
2015
, “
Effect of Impacting Particle Kinetic Energy on Slurry Erosion Wear
,”
J. Bio- Tribo-Corrosion
,
1
(
29
), pp.
1
9
.
10.
Thakur
,
P. A.
,
Khairnar
,
H. S.
,
Deore
,
E. R.
, and
More
,
S. R.
,
2015
, “
Development of Slurry Jet Erosion Tester to Simulate the Erosion Wear Due to Solid-Liquid Mixture
,”
Int. J. Nov. Res. Eng. Sci.
,
2
(
1
), pp.
14
20
.
11.
Islam
,
M. A.
, and
Farhat
,
Z. N.
,
2014
, “
Effect of Impact Angle and Velocity on Erosion of API X42 Pipeline Steel Under High Abrasive Feed Rate
,”
Wear
,
311
(
1–2
), pp.
180
190
.
12.
Oka
,
Y. I.
,
Ohnogi
,
H.
,
Hosokawa
,
T.
, and
Matsumura
,
M.
,
1997
, “
The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact
,”
Wear
,
203–204
, pp.
573
579
.
13.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena, Part I
,”
Wear
,
6
(
1
), pp.
5
21
.
14.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena, Part II
,”
Wear
,
6
, pp.
169
190
.
15.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
,
Tribology—Friction and Wear of Engineering Materials
,
Butterworth-Heinemann
,
Oxford, UK
.
16.
Hutchings
,
I. M.
,
1981
, “
A Model for the Erosion of Metals by Spherical Particles at Normal Incidence
,”
Wear
,
70
(
3
), pp.
269
281
.
17.
Levy
,
A.
,
1986
, “
Platelet Mechanism of Erosion of Ductile Metals
,”
Wear
,
108
(
1
), pp.
1
21
.
18.
Laguna-Camacho
,
J. R.
,
Marquina-Chávez
,
A.
,
Méndez-Méndez
,
J. V.
,
Vite-Torres
,
M.
, and
Gallardo-Hernández
,
E. A.
,
2013
, “
Solid Particle Erosion of AISI 304, 316 and 420 Stainless Steels
,”
Wear
,
301
(
1–2
), pp.
398
405
.
19.
Divakar
,
M.
,
Agarwal
,
V. K.
, and
Singh
,
S. N.
,
2005
, “
Effect of the Material Surface Hardness on the Erosion of AISI 316
,”
Wear
,
259
(
1–6
), pp.
110
117
.
20.
Harsha
,
A. P.
, and
Bhaskar
,
D. K.
,
2008
, “
Solid Particle Erosion Behaviour of Ferrous and Non-Ferrous Materials and Correlation of Erosion Data With Erosion Models
,”
Mater. Des.
,
29
(
9
), pp.
1745
1754
.
21.
O’Flynn
,
D. J.
,
Bingley
,
M. S.
,
Bradley
,
M. S. A.
, and
Burnett
,
A. J.
,
2001
, “
A Model to Predict the Solid Particle Erosion Rate of Metals and Its Assessment Using Heat-Treated Steels
,”
Wear
,
248
(
1–2
), pp.
162
177
.
22.
Jackson
,
R.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
23.
Pintaude
,
G.
,
2023
, “
Hardness as an Indicator of Material Strength: A Critical Review
,”
Crit. Rev. Solid State Mater. Sci.
,
48
(
5
), pp.
623
641
.
24.
Jackson
,
R. L.
,
Ghaednia
,
H.
, and
Pope
,
S.
,
2015
, “
A Solution of Rigid–Perfectly Plastic Deep Spherical Indentation Based on Slip-Line Theory
,”
Tribol. Lett.
,
58
(
47
), pp.
1
7
.
25.
Ghaednia
,
H.
, and
Marghitu
,
D. B.
,
2016
, “
Permanent Deformation During the Oblique Impact with Friction
,”
Arch. Appl. Mech.
,
86
(
1–2
), pp.
121
134
.
26.
Green
,
I.
,
2022
, “
The Prediction of the Coefficient of Restitution Between Impacting Spheres and Finite Thickness Plates Undergoing Elastoplastic Deformations and Wave Propagation
,”
Nonlinear Dyn.
,
109
(
4
), pp.
2443
2458
.
27.
Joshi
,
M. D.
,
Kumar
,
V.
,
Singh
,
I.
, and
Hosmani
,
S. S.
,
2021
, “
Tribological Response of Mechanical Attrition Treated Surface of AISI 316L Steel: The Role of Velocity of Colliding Balls
,”
ASME J. Tribol.
,
143
(
3
), p.
031701
.
28.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
29.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.
30.
Wheeler
,
D. W.
, and
Wood
,
R. J. K.
,
1999
, “
Solid Particle Erosion of CVD Diamond Coatings
,”
Wear
,
233–235
, pp.
306
318
.
31.
Katsumata
,
T.
,
Matsubara
,
T.
,
Yamamoto
,
K.
, and
Iwai
,
Y.
,
2021
, “
Evaluation of Coating Properties With a Micro Slurry-Jet Erosion (MSE) Test:—Effects of the Shape and Size of Erodent Particles on Erosion Behaviors of TiN Coating –
,”
Surf. Coatings Technol.
,
421
(
April
), p.
127443
.
32.
Kirchner
,
H. P.
, and
Gruver
,
R. M.
,
1977
, “
Localized Impact Damage in Glass
,”
Mater. Sci. Eng.
,
28
(
1
), pp.
153
160
.
33.
Buszko
,
M. H.
, and
Zakrzewska
,
D. E.
,
2024
, “
The Influence of Impact Velocity on Stresses and Failure of S355J2 Steel Under Slurry Erosion Conditions
,”
Adv. Sci. Technol. Res. J.
,
18
(
7
), pp.
62
77
.
34.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
Multiple Loading-Unloading of an Elastic-Plastic Spherical Contact
,”
Int. J. Solids Struct.
,
43
(
22–23
), pp.
7119
7127
.
35.
Katta
,
R. R.
,
Polycarpou
,
A. A.
,
Hanchi
,
J. V.
, and
Crone
,
R. M.
,
2009
, “
High Velocity Oblique Impact and Coefficient of Restitution for Head Disk Interface Operational Shock
,”
ASME J. Tribol.
,
131
(
2
), p.
021903
.
36.
Maw
,
N.
,
Barber
,
J. R.
, and
Fawcett
,
J. N.
,
1980
, “
The Role of Elastic Tangential Compliance in Oblique Impact
,”
ASME J. Tribol.
,
103
(
1
), pp.
74
80
.
37.
Gessesse
,
Y. B.
,
Attia
,
M. H.
, and
Osman
,
M. O. M.
,
2004
, “
On the Mechanics of Crack Initiation and Propagation in Elasto-Plastic Materials in Impact Fretting Wear
,”
ASME J. Tribol.
,
126
(
2
), pp.
395
403
.
38.
Yarrapareddy
,
E.
, and
Kovacevic
,
R.
,
2007
, “
Numerical Simulation and Characterization of Slurry Erosion of Laser Cladded Surfaces by Using Failure Analysis Approach
,”
J. Fail. Anal. Prev.
,
7
(
6
), pp.
464
474
.
39.
Dubey
,
A.
, and
John
,
F.
,
2013
, “
Finite Element Modelling Of Surface Stresses In Coatings Under Single Particle Impact
,”
Int. J. Eng. Res. Technol.
,
2
(
6
), pp.
3421
3426
.
40.
Yavuz
,
M. M.
,
2013
, “
Investigation of the Effect of Plate Dimensions and Thicknesses on the Impact Effect of a Steel Ball
,”
Int. J. Eng. Appl. Sci.
,
2
(
1
), pp.
1
8
.
41.
Graham
,
L. J. W.
,
Lester
,
D.
, and
Wu
,
J.
,
2009
, “
Slurry Erosion in Complex Flows : Experiment and CFD
,”
Proceedings of the Seventh International Conference on CFD Miner. Process Ind
,
CSIRO, Melbourne, Australia
,
Dec. 9–11
, pp.
1
6
.
42.
Grewal
,
H. S.
,
Singh
,
H.
, and
Yoon
,
E.-S.
,
2015
, “
Interplay Between Erodent Concentration and Impingement Angle for Erosion in Dilute Water–Sand Flows
,”
Wear
,
332–333
, pp.
1111
1119
.
43.
Azimian
,
M.
, and
Bart
,
H. J.
,
2013
, “
CFD Simulation and Experimental Analysis of Erosion in a Slurry Tank Test Rig
,”
EPJ Web Conf.
,
45
, p.
01009
.
44.
Jackson
,
R. L.
,
Ghaednia
,
H.
,
Lee
,
H.
,
Rostami
,
A.
, and
Wang
,
X.
,
2013
, “Contact Mechanics,”
Tribology for Scientists and Engineers: From Basics to Advanced Concepts
,
P.L.
Menezes
, et al
, ed.,
Springer New York
,
New York
, pp.
93
140
.
45.
Nandre
,
B. D.
, and
Desale
,
G. R.
,
2023
, “
Investigation on the Effect of Contact Area and Stress Concentration on Slurry Erosion Wear of AA6063 Using Hertz Contact Theory and Numerical Technique
,”
Tribol. Ind.
,
45
(
3
), pp.
396
407
.
46.
Wheeler
,
D. W.
, and
Wood
,
R. J. K.
,
2006
, “
Solid Particle Erosion Behaviour of CVD Boron Phosphide Coatings
,”
Surf. Coatings Technol.
,
200
(
14–15
), pp.
4456
4461
.
47.
Chicet
,
D.
,
Tufescu
,
A.
,
Paulin
,
C.
,
Panțuru
,
M.
, and
Munteanu
,
C.
,
2017
, “
The Simulation of Point Contact Stress State for APS Coatings
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
209
(
1
), p.
012044
.
48.
Aquaro
,
D.
, and
Fontani
,
E.
,
2001
, “
Erosion of Ductile and Brittle Materials
,”
Meccanica
,
36
(
6
), pp.
651
661
.
49.
Purushothaman
,
P.
, and
Thankachan
,
P.
,
2014
, “
Hertz Contact Stress Analysis and Validation Using Finite Element Analysis
,”
Int. J. Res. Appl. Sci. Eng. Technol.
,
2
(
5
), pp.
531
538
.
50.
Barber
,
J.
,
Mellor
,
B. G.
, and
Wood
,
R. J. K.
,
2005
, “
The Development of Sub-Surface Damage During High Energy Solid Particle Erosion of a Thermally Sprayed WC-Co-Cr Coating
,”
Wear
,
259
(
1–6
), pp.
125
134
.
51.
Buszko
,
M. H.
,
Krella
,
A. K.
,
Marchewicz
,
A.
, and
Gajowiec
,
G.
,
2021
, “
Effect of Annealing Temperature on Slurry Erosion Resistance of Ferritic X10CrAlSi18 Steel
,”
Tribol. Int.
,
153
(
May 2020
), p.
106648
.
52.
Senapati
,
P.
,
Sutar
,
H.
, and
Pal
,
M. R.
,
2021
, “Slurry Erosion Behaviour of AISI 304 Stainless Steel Under Laboratory Conditions,”
Current Advances in Mechanical Engineering: Select Proceedings of ICRAMERD 2020
,
S. K.
Acharya
, and
D. P.
Mishra
, eds.,
Springer Singapore
,
Singapore
, pp.
859
868
.
53.
Laguna-Camacho
,
J. R.
,
Marquina-Chávez
,
A.
,
Escalante-Martínez
,
J.E.
,
Márquez-Vera
,
C.A.
,
Hernández-Romero
,
I.
,
Galicia-Badillo
,
A.
, and
Santes-Bastián
,
M. del C.
,
2014
, “An Analysis of the Solid Particle Erosion Damage Caused on AISI 304,”
Microscopy: Advances in Scientific Research and Education
, Vol.
2
,
A.
Méndez-Vilas
, ed.,
Formatex Research Center
,
Spain
, pp.
1053
1063
.
54.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2006
, “
Effect of Erodent Properties on Erosion Wear of Ductile Type Materials
,”
Wear
,
261
(
7–8
), pp.
914
921
.
55.
Nguyen
,
Q. B.
,
Nguyen
,
D. N.
,
Murray
,
R.
,
Ca
,
N. X.
,
Lim
,
C. Y. H.
,
Gupta
,
M.
, and
Nguyen
,
X. C.
,
2019
, “
The Role of Abrasive Particle Size on Erosion Characteristics of Stainless Steel
,”
Eng. Fail. Anal.
,
97
, pp.
844
853
.
56.
Nguyen
,
Q. B.
,
Nguyen
,
V. B.
,
Lim
,
C. Y. H.
,
Trinh
,
Q. T.
,
Sankaranarayanan
,
S.
,
Zhang
,
Y. W.
, and
Gupta
,
M.
,
2014
, “
Effect of Impact Angle and Testing Time on Erosion of Stainless Steel at Higher Velocities
,”
Wear
,
321
, pp.
87
93
.
57.
Ji
,
X.
,
Yang
,
S.
,
Zhao
,
J.
,
Yan
,
C.
, and
Jiang
,
L.
,
2012
, “
Effect of Heat Treatment on Slurry Erosion Wear Resistance of Amorphous Ni-P Electrodeposits
,”
Tribol. Trans.
,
55
(
1
), pp.
86
90
.
58.
Malik
,
J.
,
Toor
,
I. H.
,
Ahmed
,
W. H.
,
Gasem
,
Z. M.
,
Habib
,
M. A.
,
Ben-Mansour
,
R.
, and
Badr
,
H. M.
,
2014
, “
Evaluating the Effect of Hardness on Erosion Characteristics of Aluminum and Steels
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
2274
2282
.
59.
Wood
,
R. J. K.
,
Puget
,
Y.
,
Trethewey
,
K. R.
, and
Stokes
,
K.
,
1998
, “
The Performance of Marine Coatings and Pipe Materials Under Fluid-Borne Sand Erosion
,”
Wear
,
219
(
1
), pp.
46
59
.
60.
Ji
,
X.
,
Han
,
X.
,
Zhou
,
M.
, and
Liu
,
J.
,
2014
, “
Effect of Heat Treatment on the Slurry Erosion Resistance of High Strength Steel DP980
,”
Int. J. Mater. Res.
,
105
(
5
), pp.
487
492
.
61.
Ojala
,
N.
,
Valtonen
,
K.
,
Antikainen
,
A.
,
Kemppainen
,
A.
,
Minkkinen
,
J.
,
Oja
,
O.
, and
Kuokkala
,
V. T.
,
2016
, “
Wear Performance of Quenched Wear Resistant Steels in Abrasive Slurry Erosion
,”
Wear
,
354–355
, pp.
21
31
.
62.
Foley
,
T.
, and
Levy
,
A.
,
1983
, “
The Erosion of Heat-Treated Steels
,”
Wear
,
91
(
1
), pp.
45
64
.
63.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2007
, “
Elastic-Plastic Spherical Contact Under Combined Normal and Tangential Loading in Full Stick
,”
Tribol. Lett.
,
25
(
1
), pp.
61
70
.
64.
Zhao
,
B.
,
Zhang
,
S.
, and
Keer
,
L. M.
,
2017
, “
Spherical Elastic-Plastic Contact Model for Power-Law Hardening Materials Under Combined Normal and Tangential Loads
,”
ASME J. Tribol.
,
139
(
2
), p.
021401
.
65.
Kalácska
,
Á
,
Nagarajan
,
R.
,
Tóth
,
L. F.
,
De Baets
,
P.
,
Subramanian
,
K.
,
Siengchin
,
S.
, and
Kalácska
,
G.
,
2022
, “
Surface Damage Analysis on the Application of Abrasion and Slurry Erosion in Targeted Steels Using an Erosion Test Rig
,”
Lubricants
,
10
, p.
316
.
66.
Kishor
,
B.
,
Chaudhari
,
G. P.
, and
Nath
,
S. K.
,
2016
, “
Slurry Erosion of Thermo-Mechanically Processed 13Cr4Ni Stainless Steel
,”
Tribol. Int.
,
93
, pp.
50
57
.
67.
Sundararajan
,
G.
,
1991
, “
The Depth of Plastic Deformation Beneath Eroded Surfaces: The Influence of Impact Angle and Velocity, Particle Shape and Material Properties
,”
Wear
,
149
(
1–2
), pp.
129
153
.
68.
Singh
,
T.
,
Tiwari
,
S. N.
, and
Sundararajan
,
G.
,
1991
, “
Room Temperature Erosion Behaviour of 304, 316 and 410 Stainless Steels
,”
Wear
,
145
(
1
), pp.
77
100
.
69.
Hertz
,
H.
,
1881
, “
Über Die Berührung Fester Elastischer Körper
,”
J. für die reine und Angew. Math.
,
92
, pp.
156
171
.
70.
Ige
,
O. O.
, and
Umoru
,
L. E.
,
2016
, “
Effects of Shear Stress on the Erosion - Corrosion Behaviour of X-65 Carbon Steel : A Combined Mass-Loss and Pro Fi Lometry Study
,”
Tribiol. Int.
,
94
, pp.
155
164
.
71.
Leet
,
K. M.
, and
Uang
,
C.-M.
,
2005
,
Fundamentals of Structural Analysis
,
McGraw-Hill Higher Education
,
Singapore
.
72.
Hazizi
,
K.
, and
Ghaleeh
,
M.
,
2023
, “
Design and Analysis of a Typical Vertical Pressure Vessel Using ASME Code and FEA Technique
,”
Designs
,
7
(
3
), p.
78
.
73.
Jackson
,
R. L.
, and
Kogut
,
L.
,
2006
, “
A Comparison of Flattening and Indentation Approaches for Contact Mechanics Modeling of Single Asperity Contacts
,”
ASME J. Tribol.
,
128
(
1
), pp.
209
212
.
74.
Ghaednia
,
H.
,
Brake
,
M. R. W.
,
Berryhill
,
M.
, and
Jackson
,
R. L.
,
2019
, “
Strain Hardening From Elastic-Perfectly Plastic to Perfectly Elastic Flattening Single Asperity Contact
,”
ASME J. Tribol.
,
141
(
3
), p.
031402
.
75.
Abedini
,
M.
, and
Ghasemi
,
H. M.
,
2017
, “
Erosion and Erosion–Corrosion of Al-Brass Alloy: Effects of Jet Velocity, Sand Concentration and Impingement Angle on Surface Roughness
,”
Trans. Nonferrous Met. Soc. China (English Ed.)
,
27
(
11
), pp.
2371
2380
.
76.
Elemuren
,
R.
,
Tamsaki
,
A.
,
Evitts
,
R.
,
Oguocha
,
I. N. A.
,
Kennell
,
G.
,
Gerspacher
,
R.
, and
Odeshi
,
A.
,
2019
, “
Erosion-Corrosion of 90° AISI 1018 Steel Elbows in Potash Slurry: Effect of Particle Concentration on Surface Roughness
,”
Wear
,
430–431
(
March
), pp.
37
49
.
77.
Grzesik
,
W.
,
2015
, “
Effect of the Machine Parts Surface Topography Features on the Machine Service
,”
Mechanik
, (
8–9
), pp.
587
593
.
78.
Vyas
,
A.
,
Menghani
,
J.
,
Patel
,
P.
,
More
,
S.
,
Paul
,
C. P.
,
Patnaik
,
A.
, and
Ingole
,
S. P.
,
2021
, “
Characterization and Optimization of Slurry Erosion Behavior of SS 316 at Room Temperature
,”
Trans. Indian Inst. Met.
,
74
(
4
), pp.
839
849
.
79.
Kumar
,
G.
,
More
,
S. R.
,
Bhatt
,
D.
, and
Menghani
,
J.
,
2017
, “
Study of Slurry Erosion Wear Behavior of SS-304 in a Slurry Pot Test Rig Under Different Operating Parameters
,”
Ski. Res. J.
,
7
(
2
), pp.
58
63
.
80.
Krella
,
A. K.
,
Zakrzewska
,
D. E.
,
Buszko
,
M. H.
, and
Marchewicz
,
A.
,
2021
, “
Effect of Thermal Treatment and Erosion Aggressiveness on Resistance of S235JR Steel to Cavitation and Slurry
,”
Materials (Basel)
,
14
(
6
), p.
1456
.
You do not currently have access to this content.