Abstract

Hole pattern seals (HPS) reduce leakage and suppress rotordynamic instability in high-performance compressors. A bulk flow modeling of HPS to obtain stiffness, mass, and damping coefficients for the HPS requires a friction factor model. This is typically obtained experimentally in a flat plate tester with flow between a smooth and a roughened flat plate. This article presents an alternative approach to training an artificial neural network (ANN) in conjunction with computational fluid dynamics (CFD) modeling to predict friction factors and leakage in a round hole pattern seal. CFD is used to predict friction factors for a large number of round hole pattern flat plate tester configurations. The CFD results are validated by comparison with experimental results for gas and liquid flat plate HPS cases. An ANN is trained using this large dataset of CFD friction factor results. The ANN-predicted friction factors are shown to accurately predict the friction factors as compared with CFD models. These friction factor predictions are then utilized to obtain the Hirs and Moody friction factor coefficients, and subsequently the seal dynamic coefficients.

References

1.
von Pragenau
,
G. L.
,
1982
, “Damping Seals for Turbomachinery,” NASA Report No. NASA-TP-1987
2.
Ha
,
T. W.
, and
Childs
,
D. W.
,
1994
, “
Annular Honeycomb-Stator Turbulent Gas Seal Analysis Using a New Friction-Factor Model Based on Flat Plate Tests
,”
ASME J. Tribol.
,
116
(
2
), pp.
352
359
3.
San Andres
,
L.
,
Delgado
,
A.
, and
Yang
,
J.
,
2022
, “
Annular Clearance Gas Seals: Models and Measurements for Leakage, Force Coefficients and Their Effect on Rotor Stability
,”
Asia Turbomachinery and Pump Symposium
,
Kuala Lumpur, Malaysia
,
May 24–26
.
4.
Hirs
,
G. G.
,
1973
, “
A Bulk-Flow Theory for Turbulence in Lubricant Films
,”
ASME J. Lubr. Tech.
,
95
(
2
), pp.
137
145
.
5.
Childs
,
D. W.
,
1983
, “
Dynamic Analysis of Turbulent Annular Seals Based on Hirs' Lubrication Equation
,”
ASME J. Lubr. Tech.
,
105
(
3
), pp.
429
436
.
6.
Venkataraman
,
B.
, and
Palazzolo
,
A.
,
1997
, “
Thermohydrodynamic Analysis of Eccentric Annular Seals Using Cubic Spline Interpolations©
,”
Tribol. Trans.
,
40
(
1
), pp.
183
194
.
7.
San Andres
,
L.
,
1991
, “
Analysis of Variable Fluid Properties, Turbulent Annular Seals
,”
ASME J. Tribol.
,
113
(
4
), pp.
694
702
.
8.
Padavala
,
S.
,
Palazzolo
,
A.
,
Vallely
,
P.
, and
Ryan
,
S.
,
1994
, “
Simulation Study With Arbitrary Profile Liquid Annular Seals
,”
Tribol. Trans.
,
37
(
4
), pp.
667
678
.
9.
Childs
,
D. W.
,
Nolan
,
S. A.
, and
Kilgore
,
J. J.
,
1990
, “
Additional Test Results for Round-Hole-Pattern Damper Seals: Leakage, Friction Factors, and Rotordynamic Force Coefficients
,”
ASME J. Tribol.
,
112
(
2
), pp.
365
371
.
10.
Marquette
,
O. R.
,
Childs
,
D. W.
, and
San Andres
,
L.
,
1997
, “
Eccentricity Effects on the Rotordynamic Coefficients of Plain Annular Seals: Theory Versus Experiment
,”
ASME J. Tribol.
,
119
(
3
), pp.
443
447
.
11.
Chochua
,
G.
,
Shyy
,
W.
, and
Moore
,
J.
,
2001
, “
Thermophysical Modeling for Honeycomb-Stator Gas Annular Seal
,”
35th AIAA Thermophysics Conference
,
Anaheim, CA
,
June 11–14
, p.
2757
.
12.
Chochua
,
G.
, and
Shyy
,
W.
,
2003
, “
Computational Modeling of Turbulent Flows Over Rough Surfaces
,”
Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition. Fluids Engineering
,
Washington, DC
,
Nov. 15–21
, pp.
193
201
.
13.
Nielsen
,
K. K.
,
Jønck
,
K.
, and
Underbakke
,
H.
,
2012
, “
Hole-Pattern and Honeycomb Seal Rotordynamic Forces: Validation of CFD-Based Prediction Techniques
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122505
.
14.
Chochua
,
G.
, and
Soulas
,
T. A.
,
2007
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(
2
), pp.
424
429
.
15.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
.
16.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.
17.
Untaroiu
,
A.
,
Migliorini
,
P.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Kocur
,
J. A.
,
2009
, “
Hole-Pattern Seals: A Three Dimensional CFD Approach for Computing Rotordynamic Coefficient and Leakage Characteristics
,”
Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Volume 10: Mechanical Systems and Control, Parts A and B
,
Lake Buena Vista, FL
,
Nov. 13–19
, pp.
981
990
.
18.
Dawahdeh
,
A.
,
Oh
,
J.
,
Zhai
,
T.
, and
Palazzolo
,
A.
,
2021
, “
Computational Fluid Dynamics—Machine Learning Prediction of Machinery Coupling Windage Heating and Power Loss
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), p.
082201
.
19.
Yang
,
J.
, and
Palazzolo
,
A.
,
2021
, “
Computational Fluid Dynamics Based Mixing Prediction for Tilt Pad Journal Bearing TEHD Modeling—Part II: Implementation With Machine Learning
,”
ASME J. Tribol.
,
143
(
1
), p.
011802
.
20.
Yang
,
J.
, and
Palazzolo
,
A.
,
2022
, “
Tilt Pad Bearing Distributed Pad Inlet Temperature With Machine Learning—Part II: Morton Effect
,”
ASME J. Tribol.
,
144
(
6
), p.
061802
.
21.
Childs
,
D. W.
,
Kheireddin
,
B.
,
Phillips
,
S.
, and
Asirvatham
,
T. D.
,
2011
, “
Friction Factor Behavior From Flat-Plate Tests of Smooth and Hole-Pattern Roughened Surfaces With Supply Pressures up to 84 bar
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092504
.
22.
Massini
,
D.
,
Facchini
,
B.
,
Micio
,
M.
,
Bianchini
,
C.
,
Ceccherini
,
A.
, and
Innocenti
,
L.
,
2014
, “
Analysis of Flat Plate Honeycomb Seals Aerodynamic Losses: Effects of Clearance
,”
Energy Procedia
,
45
, pp.
502
511
.
23.
Ha
,
T. W.
,
2004
, “
Test Results of Friction Factor for Round-Hole Roughness Surfaces in Closely Spaced Channel Flow of Water
,”
KSME Int. J.
,
18
(
10
), pp.
1849
1858
.
24.
Asirvatham
,
T. D.
,
Childs
,
D. W.
, and
Phillips
,
S.
,
2011
, “
Friction Factor Behavior From Flat-Plate Tests of 12.15 mm Diameter Hole-Pattern Roughened Surfaces
,”
Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 6: Structures and Dynamics, Parts A and B
,
Vancouver, BC, Canada
,
June 6–10
, pp.
247
255
.
25.
Ha
,
T. W.
, and
Childs
,
D. W.
,
1992
, “
Friction-Factor Data for Flat-Plate Tests of Smooth and Honeycomb Surfaces
,”
ASME J. Tribol.
,
114
(
4
), pp.
722
729
.
26.
ANSYS, Inc.
,
2021
,
ANSYS CFX-Solver Theory Guide Release 2021R2
,
ANSYS Inc.
,
Canonsburg, PA
.
27.
Childs
,
D. W.
, and
Wade
,
J.
,
2004
, “
Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern-Stator Annular Gas Seals—Measurements Versus Predictions
,”
ASME J. Tribol.
,
126
(
2
), pp.
326
333
.
28.
Kleynhans
,
G. F.
,
1996
. “
A Two Control-Volume Bulk-Flow Rotordynamic Analysis for Smooth-Rotor/Honeycomb-Stator Gas Annular Seals
,”
Ph.D. dissertation
,
Texas A&M University
,
College Station, TX
.
29.
Soulas
,
T.
, and
Andres
,
L. S.
,
2007
, “
A Bulk Flow Model for Off-Centered Honeycomb Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
185
194
.
You do not currently have access to this content.