Experiments were conducted to determine the effects of model orientation as well as buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. Turbine blades have internal coolant passage surfaces at the leading and trailing edges of the airfoil with surfaces at angles that are as large as ±50 to 60 deg to the axis of rotation. Most of the previously presented, multiple-passage, rotating heat transfer experiments have focused on radial passages aligned with the axis of rotation. The present work compares results from serpentine passages with orientations 0 and 45 deg to the axis of rotation, which simulate the coolant passages for the midchord and trailing edge regions of the rotating airfoil. The experiments were conducted with rotation in both directions to simulate serpentine coolant passages with the rearward flow of coolant or with the forward flow of coolant. The experiments were conducted for passages with smooth surfaces and with 45 deg trips adjacent to airfoil surfaces for the radial portion of the serpentine passages. At a typical flow condition, the heat transfer on the leading surfaces for flow outward in the first passage with smooth walls was twice as much for the model at 45 deg compared to the model at 0 deg. However, the differences for the other passages and with trips were less. In addition, the effects of buoyancy and Coriolis forces on heat transfer in the rotating passage were decreased with the model at 45 deg, compared to the results at 0 deg. The heat transfer in the turn regions and immediately downstream of the turns in the second passage with flow inward and in the third passage with flow outward was also a function of model orientation with differences as large as 40 to 50 percent occurring between the model orientations with forward flow and rearward flow of coolant.

This content is only available via PDF.
You do not currently have access to this content.