Large circumferentially varying pressure levels produced by aerodynamic flow interactions between downstream stators and struts present a potential noise and stability margin liability in a compression component. These interactions are presently controlled by tailoring the camber and/or stagger angles of vanes neighboring the fan frame struts. This paper reports on the design and testing of a unique set of swept and leaned fan outlet guide vanes (OGVs) that do not require this local tailoring even though the OGVs are closely coupled with the fan frame struts and splitter to reduce engine length. The swept and leaned OGVs not only reduce core-duct diffusion, but they also reduce the potential flow interaction between the stator and the strut relative to that produced by conventional radial OGVs. First, the design of the outlet guide vanes using a single blade row three-dimensional viscous flow analysis is outlined. Next, a two-dimensional potential flow analysis was used for the coupled OGV–frame system to obtain a circumferentially nonuniform stator stagger angle distribution to reduce the upstream static pressure disturbance further. Recognizing the limitations of the two-dimensional potential flow analysis for this highly three-dimensional set of leaned OGVs, as a final evaluation of the OGV–strut system design, a full three-dimensional viscous analysis of a periodic circumferential sector of the OGVs, including the fan frame struts and splitter, was performed. The computer model was derived from a NASA-developed code used in simulating the flow field for external aerodynamic applications with complex geometries. The three-dimensional coupled OGV–frame analysis included the uniformly staggered OGV configuration and the variably staggered OGV configuration determined by the two-dimensional potential flow analysis. Contrary to the two-dimensional calculations, the three-dimensional analysis revealed significant flow problems with the variably staggered OGV configuration and showed less upstream flow nonuniformity with the uniformly staggered OGV configuration. The flow redistribution in both the radial and tangential directions, captured fully only in the three-dimensional analysis, was identified as the prime contributor to the lower flow nonuniformity with the uniformly staggered OGV configuration. The coupled three-dimensional analysis was also used to validate the design at off-design conditions. Engine test performance and stability measurements with both uniformly and variably staggered OGV configurations with and without the presence of inlet distortion confirmed the conclusions from the three-dimensional analysis.
Skip Nav Destination
Article navigation
July 1999
Research Papers
Design and Testing of Swept and Leaned Outlet Guide Vanes to Reduce Stator–Strut–Splitter Aerodynamic Flow Interactions
A. R. Wadia,
A. R. Wadia
GE Aircraft Engines, Cincinnati, OH 45215
Search for other works by this author on:
P. N. Szucs,
P. N. Szucs
GE Aircraft Engines, Cincinnati, OH 45215
Search for other works by this author on:
K. L. Gundy-Burlet
K. L. Gundy-Burlet
NASA Ames Research Center, Moffet Field, CA 94035
Search for other works by this author on:
A. R. Wadia
GE Aircraft Engines, Cincinnati, OH 45215
P. N. Szucs
GE Aircraft Engines, Cincinnati, OH 45215
K. L. Gundy-Burlet
NASA Ames Research Center, Moffet Field, CA 94035
J. Turbomach. Jul 1999, 121(3): 416-427 (12 pages)
Published Online: July 1, 1999
Article history
Received:
February 1, 1998
Online:
January 29, 2008
Citation
Wadia, A. R., Szucs, P. N., and Gundy-Burlet, K. L. (July 1, 1999). "Design and Testing of Swept and Leaned Outlet Guide Vanes to Reduce Stator–Strut–Splitter Aerodynamic Flow Interactions." ASME. J. Turbomach. July 1999; 121(3): 416–427. https://doi.org/10.1115/1.2841334
Download citation file:
Get Email Alerts
Cited By
Related Articles
Aerodynamic Analysis of an Innovative Low Pressure Vane Placed in an s-Shape Duct
J. Turbomach (January,2012)
Experimental Investigation of the Effect of Bleed on the Aerodynamics of a Low-Pressure Compressor Stage in a Turbofan Engine
J. Turbomach (March,2024)
Low Reynolds-Number Experiments in an Axial-Flow Turbomachine
J. Eng. Power (July,1964)
Related Proceedings Papers
Related Chapters
Aerodynamic Performance Analysis
Axial-Flow Compressors
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Other Components and Variations
Axial-Flow Compressors