The present study provides new effusion cooling data for both the surfaces of the full-coverage effusion cooling plate. For the effusion-cooled surface, presented are spatially resolved distributions of surface adiabatic film cooling effectiveness and surface heat transfer coefficients (measured using transient techniques and infrared thermography). For the impingement-cooled surface, presented are spatially resolved distributions of surface Nusselt numbers (measured using steady-state liquid crystal thermography). To produce this cool-side augmentation, impingement jet arrays at different jet Reynolds numbers, from 2720 to 11,100, are employed. Experimental data are given for a sparse effusion hole array, with spanwise and streamwise impingement hole spacing such that coolant jet hole centerlines are located midway between individual effusion hole entrances. Considered are the initial effusion blowing ratios from 3.3 to 7.5, with subsonic, incompressible flow. The velocity of the freestream flow which is adjacent to the effusion-cooled boundary layer is increasing with streamwise distance, due to a favorable streamwise pressure gradient. Such variations are provided by a main flow passage contraction ratio CR of 4. Of particular interest are effects of impingement jet Reynolds number, effusion blowing ratio, and streamwise development. Also, included are comparisons of impingement jet array cooling results with: (i) results associated with crossflow supply cooling with CR = 1 and CR = 4 and (ii) results associated with impingement supply cooling with CR = 1, when the mainstream pressure gradient is near zero. Overall, the present results show that, for the same main flow Reynolds number, approximate initial blowing ratio, and streamwise location, significantly increased thermal protection is generally provided when the effusion coolant is provided by an array of impingement cooling jets, compared to a crossflow coolant supply.

References

1.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Husain
,
C. I.
,
Mkpadi
,
M. C.
, and
Nazari
,
A.
,
1988
, “
Impingement/Effusion Cooling: Overall Wall Heat Transfer
,”
ASME
Paper No. 88-GT-290.
2.
Al Dabagh
,
A. M.
,
Andrews
,
G. E.
,
Abdul Husain
,
R. A. A.
,
Husain
,
C. I.
,
Nazari
,
A.
, and
Wu
,
J.
,
1990
, “
Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient
,”
ASME J. Turbomach.
,
112
(
3
), pp.
467
476
.
3.
Andrews
,
G. E.
,
Al-Dabagh
,
A. M.
,
Asere
,
A. A.
,
Bazdidi-Tehrani
,
F.
,
Mkpadi
,
M. C.
, and
Nazari
,
A.
,
1992
, “
Impingement/Effusion Cooling
,”
AGARD Conference 527, 80th Symposium on Heat Transfer and Cooling in Gas Turbines
, AGARD Propulsion and Energetics Panel, Antalya, Turkey, Oct. 12–16, pp. 30.1–30.10.
4.
Andrews
,
G. E.
, and
Nazari
,
A.
,
1999
, “
Impingement/Effusion Cooling: Influence of Number of Holes On the Cooling Effectiveness For An Impingement X/D of 10.5 and Effusion X/D of 7.0
,”
GTSJ International Gas Turbine Congress
, Vol. II, Paper No. IGTC TS-51.
5.
Cho
,
H. H.
, and
Rhee
,
D. H.
,
2001
, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling Systems
,”
ASME J. Turbomach.
,
123
(
3
), pp.
601
608
.
6.
Hong
,
S. K.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
,
2007
, “
Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement/Effusion Cooling With Cross-Flow
,”
ASME J. Heat Transfer
,
129
(
12
), pp.
1697
1707
.
7.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Goldstein
,
R. J.
,
2008
, “
Effects of Hole Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Hole Spacing
,”
ASME J. Turbomach.
,
130
(
4
), p. 041003.
8.
Miller
,
M.
,
Natsui
,
G.
,
Ricklick
,
M.
,
Kapat
,
J.
, and
Schilp
,
R.
,
2014
, “
Heat Transfer in a Coupled Impingement-Effusion Cooling System
,”
ASME
Paper No. GT2014-26416.
9.
Shi
,
B.
,
Li
,
J.
,
Li
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Cooling Effectiveness on a Flat Plate With Both Film Cooling and Impingement Cooling in Hot Gas Conditions
,”
ASME
Paper No. GT2016-57224.
10.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2016
, “
Impingement/Effusion Cooling Wall Heat Transfer Conjugate Heat Transfer Computational Fluid Dynamic Predictions
,”
ASME
Paper No. GT2016-56961.
11.
El-Jummah
,
A. M.
,
Nazari
,
A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2017
, “
Impingement/Effusion Cooling Wall Heat Transfer: Reduced Number of Impingement Jet Holes Relative to the Effusion Holes
,”
ASME
Paper No. GT2017-63494.
12.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A. D.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2017
, “
Impingement/Effusion Cooling With Low Coolant Mass Flow
,”
ASME
Paper No. GT2017-63484.
13.
Rogers
,
N.
,
Ren
,
Z.
,
Buzzard
,
W.
,
Sweeney
,
B.
,
Tinker
,
N.
,
Ligrani
,
P. M.
,
Hollingsworth
,
K. D.
,
Liberatore
,
F.
,
Patel
,
R.
,
Ho
,
S.
, and
Moon
,
H.-K.
,
2016
, “
Effects of Double Wall Cooling Configuration and Conditions on Performance of Full Coverage Effusion Cooling
,”
ASME
Paper No. GT2016-56515.
14.
Ligrani
,
P.
,
Ren
,
Z.
,
Liberatore
,
F.
,
Patel
,
R.
,
Srinivasan
,
R.
, and
Ho
,
Y.
,
2017
, “
Double Wall Cooling of a Full-Coverage Effusion Plate, Including Internal Impingement Array Cooling
,”
ASME
Paper No. IMECE2017-72066.
15.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(1), pp.
3
8
.
16.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.