Abstract

With design trends toward the more electric engine (MEE) for the more electric aircraft (MEA), novel technologies can be pinpointed for multi-spool engines. Provided that a multi-spool MEE is equipped with electrical machines connected to each of its shafts, using power electronic converters (PECs) within a common high-voltage DC bus configuration, it is possible to redistribute a desired amount of power between the engine shafts independent of their speeds. This paper presents the impact of electric power transfer (EPT) on engine performance by using a developed 0-dimensional engine model based on the inter-component volume (ICV) method and engine component maps. Generic component maps are scaled to match the design point of the CFM56-3 engine. Validating the simulation results with engine performance data from literature shows that the steady-state error of the speed and fuel consumption is within 1% and 3.5% for the high- and low-speed settings, respectively, which is acceptable for the purpose of power transfer studies. It is shown that a 400 kW EPT system is the best performing for the cases run for the CFM56-3 engine, which can halve the amount of bleed air from variable bleed valves (VBVs). Results show that EPT with the rescheduled VBVs opening improves the engine performance significantly at low-speed settings by decreasing fuel consumption and increasing surge margins. Detailed simulation results from the engine model and EPT weight penalty analysis show that fuel consumption for short- and medium-haul flights reduces by up to 0.46% and 0.79% with state-of-the-art, and 0.60% and 1.0% with future technologies, respectively. Furthermore, results show that electric power transfer can recover the surge margins of degraded engines at high-speed settings.

References

References
1.
Provost
,
M. J.
,
2002
, “
The More Electric Aero-Engine: A General Overview From an Engine Manufacturer
,”
IEE Conference Publication (487)
, pp.
246
251
.
2.
Newman
,
R.
,
2004
, “
The More Electric Engine Concept
,”
World Aviation Congress & Exposition
,
SAE Technical Paper No. 2004-01-3128
.
3.
Hirst
,
M.
,
Mcloughlin
,
A.
,
Norman
,
P. J.
, and
Galloway
,
S. J.
,
2011
, “
Demonstrating the More Electric Engine: a Step Towards the Power Optimised Aircraft
,”
IET Electric Power Appl.
,
5
(
1
), pp.
3
13
. 10.1049/iet-epa.2009.0285
4.
Kreuzer
,
S.
, and
Niehuis
,
R.
,
2017
, “
Commissioning of Split Power Offtake on a Twin-Spool More Electric Engine Demonstrator
,”
Proc. ASME Turbo Expo 2017
,
10 pages, Paper No. GT2017-63320, V001T01A006
;.
5.
Pluijms
,
A.
,
Schmidt
,
K.-J.
,
Stastny
,
K.
, and
Chibisov
,
B.
,
2008
, “
Performance Comparison of More Electric Engine Configurations
,”
Proc. ASME Turbo Expo 2008
, pp.
113
122
,
Paper No. GT2008-50758
.
6.
Kloos
,
V.
,
Speak
,
T. H.
,
Sellick
,
R. J.
, and
Jeschke
,
P. D. P.
,
2018
, “
Dual Drive Booster for a Two-Spool Turbofan: High Shaft Power Offtake Capability for MEA and Hybrid Aircraft Concepts
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121201
. 10.1115/1.4040822
7.
Madonna
,
V.
,
Giangrande
,
P.
, and
Galea
,
M.
,
2018
, “
Electrical Power Generation in Aircraft: Review, Challenges and Opportunities
,”
IEEE Trans. Transportation Electrification
,
4
(
3
), pp.
646
659
. 10.1109/TTE.2018.2834142
8.
Phillips
,
S. D.
,
Neuman
,
T. M.
, and
Armstrong
,
M.
,
2013
, “
Engine Health Monitoring and Power Allocation Control for a Turbine Engine Using Electric Generators
,”
US Patent, Rolls-Royce North American Technologies Inc.
US Patent No. US9593591B2.
9.
Seok
,
J.
,
Kolmanovsky
,
I.
, and
Girard
,
A.
,
2016
, “
Integrated/Coordinated Control of Aircraft gas Turbine Engine and Electrical Power System: Towards Large Electrical Load Handling
,”
Proc. 2016 IEEE 55th Conference on Decision and Control (CDC)
, pp.
3183
3189
.
10.
Eick
,
C.
,
Gaines
,
L.
,
Laidlaw
,
M.
,
Benson
,
D.
,
Portolese
,
L.
,
Flaherty
,
B.
, and
Pearson
,
W.
,
2005
, “
More Electric Aircraft Power Transfer Systems and Methods
,”
US Patent, Honeywell International Inc
, US Patent No. US20060272313A1.
11.
Speak
,
T. H.
,
Sellick
,
R. J.
,
Kloos
,
V.
, and
Jeschke
,
P.
,
2015
, “
Dual Drive Booster for a Two-Spool Turbofan: Performance Effects and Mechanical Feasibility
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022603
. 10.1115/1.4031274
12.
Hield
,
P. M.
,
Cundy
,
J. M.
,
Midgley
,
R. A.
,
Newton
,
A. C.
, and
Rowe
,
A. L.
,
1993
, “
Shaft Power Transfer in Gas Turbine Engines with Machines Operable as Generators or Motors
,”
US Patent, Rolls-Royce PLC
, US Patent No. US5694765A.
13.
Anghel
,
C.
,
Pearson
,
W.
, and
Condon
,
J. G.
,
2012
, “
Gas Turbine Engine Optimization by Electric Power Transfer
,”
US Patent, Honeywell International Inc
, US Patent No. US20140245748A1.
14.
Belokon
,
A. A.
,
Senkevich
,
M. V.
, and
Touchton
,
G. L.
,
2003
, “
Multi-Spool Turbogenerator System and Control Method
,”
US Patent, MES International Inc
, US Patent No. US6931856B2.
15.
Turunen
,
W. A.
, and
Collman
,
J. S.
,
1966
, “
The General Motors Research GT-309 Gas Turbine Engine
,”
SAE Transactions
,
74
(
1
), pp.
357
377
. 10.4271/650714
16.
Gao
,
F.
,
Bozhko
,
S.
,
Costabeber
,
A.
,
Asher
,
G.
, and
Wheeler
,
P.
,
2017
, “
Control Design and Voltage Stability Analysis of a Droop-Controlled Electrical Power System for More Electric Aircraft
,”
IEEE Trans. Industrial Electronics
,
64
(
12
), pp.
9271
9281
. 10.1109/TIE.2017.2711552
17.
Gao
,
F.
,
Bozhko
,
S.
,
Asher
,
G.
,
Wheeler
,
P.
, and
Patel
,
C.
,
2016
, “
An Improved Voltage Compensation Approach in a Droop-Controlled DC Power System for the More Electric Aircraft
,”
IEEE Trans. Power Electronics
,
31
(
10
), pp.
7369
7383
. 10.1109/tpel.2015.2510285
18.
Lang
,
X.
,
Yang
,
T.
,
Li
,
C.
,
Enalou
,
H. B.
,
Bozhko
,
S.
, and
Wheeler
,
P.
,
2020
, “
A Dual-Channel Enhanced Power Generation Architecture with Back-to-Back Converter for MEA Application
,”
IEEE Trans. Ind. Appl.
,
56
(
3
), pp.
3006
3019
. 10.1109/TIA.2020.2974145
19.
Jia
,
Y. J.
, and
Rajashekara
,
K.
,
2017
, “
An Induction Generator-Based AC/DC Hybrid Electric Power Generation System for More Electric Aircraft
,”
IEEE Trans. Ind. Appl.
,
53
(
3
), pp.
2485
2494
. 10.1109/TIA.2017.2650862
20.
Gesell
,
H.
,
Wolters
,
F.
, and
Plohr
,
M.
,
2019
, “
System Analysis of Turbo-Electric and Hybrid-Electric Propulsion Systems on a Regional Aircraft
,”
Aeronautical J.
,
123
(
1268
), pp.
1602
1617
. 10.1017/aer.2019.61
21.
Sahoo
,
S.
,
Zhao
,
X.
, and
Kyprianidis
,
K.
,
2020
, “
A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft
,”
Aerospace
,
7
(
4
), p.
44
. 10.3390/aerospace7040044
22.
Bozhko
,
S.
,
Yang
,
T.
,
Peuvedic
,
J. L.
,
Arumugam
,
P.
,
Degano
,
M.
,
Rocca
,
A. L.
,
Xu
,
Z.
,
Rashed
,
M.
,
Fernando
,
W.
,
Hill
,
C. I.
,
Eastwick
,
C.
,
Pickering
,
S.
,
Gerada
,
C.
, and
Wheeler
,
P.
,
2018
, “
Development of Aircraft Electric Starter-Generator System Based-On Active Rectification Technology
,”
IEEE Trans. Transportation Electrification
,
4
(
4
), pp.
985
996
. 10.1109/TTE.2018.2863031
23.
Epstein
,
A. H.
, and
O’Flarity
,
S. M.
,
2019
, “
Considerations for Reducing Aviation’s CO2 with Aircraft Electric Propulsion
,”
J. Propul. Power
,
35
(
3
), pp.
572
582
. 10.2514/1.B37015
24.
Enalou
,
H. B.
,
Lang
,
X.
, and
Bozhko
,
M. R. S.
,
2020
, “
Time-Scaled Emulation of Electric Power Transfer in the More Electric Engine
,”
IEEE Trans. Transportation Electrification
. 10.1109/TTE.2020.2999400
25.
DeCastro
,
J.
,
Litt
,
J.
, and
Frederick
,
D.
,
2008
, “
A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine
,”
44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibition
,
AIAA
,
Paper No. 2008-4579
.
26.
Sellers
,
J. F.
, and
Daniele
,
C. J.
,
1975
, “
DYNGEN-A Program for Calculating Steady State and Transient Performance of Turbojet and Turbofan Engines
,”
NASA TN D-7901
.
27.
Parker
,
K.
, and
Guo
,
T. H.
,
2003
, “
Development of Turbofan Engine Simulation in a Graphical Simulation Environment
,”
NASA TM 2003-212543
.
28.
Rahman
,
N. U.
, and
Whidborne
,
J. F.
,
2009
, “
Real-Time Transient Three Spool Turbofan Engine Simulation: A Hybrid Approach
,”
ASME J. Eng. Gas Turbines Power
,
131
(
5
), p.
051602
. 10.1115/1.3079611
29.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
,
2002
, “
A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simulink
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
506
517
. 10.1115/1.2132383
30.
Fawke
,
A. J.
,
Saravanamuttoo
,
H. I. H.
, and
Holmes
,
M.
,
1972
, “
Experimental Verification of a Digital Computer Simulation Method for Predicting Gas Turbine Dynamic Behaviour
,”
Proceedings Ins. Mech. Eng.
,
186
(
1
), pp.
323
329
. 10.1243/PIME_PROC_1972_186_035_02
31.
Kurzke
,
J.
, and
Halliwell
,
I.
,
2018
,
Propulsion and Power An Exploration of Gas Turbine Performance Modeling
,
Springer
,
New York
.
32.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2008
,
Gas Turbine Performance
,
Wiley
,
New York
.
33.
Enalou
,
H. B.
, and
Soreshjani
,
E. A.
,
2015
, “
A Detailed Governor-Turbine Model for Heavy-Duty Gas Turbines With a Careful Scrutiny of Governor Features
,”
IEEE Trans. Power Syst.
,
30
(
3
), pp.
1435
1441
. 10.1109/TPWRS.2014.2342253
34.
Enalou
,
H. B.
,
Soreshjani
,
E. A.
,
Rashed
,
M.
,
Yeoh
,
S. S.
, and
Bozhko
,
S.
,
2017
, “
A Detailed Modular Governor-Turbine Model for Multiple-Spool Gas Turbine With Scrutiny of Bleeding Effect
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
114501
.10.1115/1.4036947
35.
Ridaura
,
J. A. R.
,
2014
, “
Correlation Analysis Between HPC Blade Chord and Compressor Efficiency for the CFM56-3
,”
M.Sc. thesis
,
Técnico Lisboa
,
Lisboa
.
36.
Linke-Diesinger
,
A.
,
2010
,
Systems of Commercial Turbofan Engines: An Introduction to Systems Functions
,
Springer Berlin Heidelberg
,
Hamburg
.
37.
Kurz
,
R.
,
Brun
,
K.
, and
Wollie
,
M.
,
2009
, “
Degradation Effects on Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
062401
. 10.1115/1.3097135
38.
Millsaps
,
K. T.
,
Baker
,
J.
, and
Patterson
,
J. S.
,
2004
, “
Detection and Localization of Fouling in a Gas Turbine Compressor From Aerothermodynamic Measurements
,”
ASME Turbo Expo 2004
, pp.
1867
1876
,
Paper No: GT2004-54173
.
39.
Chati
,
Y. S.
, and
Balakrishnan
,
H.
,
2013
, “
Aircraft Engine Performance Study Using Flight Data Recorder Archives
,”
2013 Aviation Technology, Integration, and Operations Conference
,
AIAA
,
Paper No. 2013-4414
.
40.
Capehart
,
B. L.
,
2007
,
Encyclopedia of Energy Engineering and Technology
, Vol.
1
,
CRC Press
.
You do not currently have access to this content.