Abstract

The paper presents several results from an experimental data base on transitional boundary layers developing on a flat plate installed within a variable area opening endwall channel. Measurements have been carried out by means of time-resolved particle image velocimetry (PIV). The overall test matrix spans three Reynolds numbers, four freestream turbulence intensity levels, and four different flow pressure gradients. For each condition, 16,000 instantaneous flow fields have been acquired in order to obtain high statistical accuracy. The flow parameters have been varied in order to provide a gradual shift of the mode of transition from a by-pass process to separated flow transition. In order to quantify the influence of the flow parameter variation on the boundary layer transition process, the transition onset and end positions, and the turbulent spot production rate have been evaluated with a wavelet-based intermittency detection technique for every condition exhibiting a complete transition process. The by-pass transition mode has the longest transition length that decreases with increasing the Reynolds number. The transition length of the separated flow case is smaller than the by-pass one, and the variation of the flow parameters has a similar impact. The variation of the inlet turbulence intensity has a small influence on this parameter except for the condition at the highest turbulence intensity that always shows the lowest turbulent spot production rate because a by-pass type transition occurs. This large amount of data has been used to develop new correlations used to predict the spot production rate and the transition length in attached and separated flows.

References

1.
Kubacki
,
S.
, and
Dick
,
E.
,
2016
, “
An Algebraic Intermittency Model for Bypass, Separation-Induced and Wake-Induced Transition
,”
Int. J. Heat Fluid Flow
,
62
(
Part B
), pp.
344
361
. 10.1016/j.ijheatfluidflow.2016.09.013
2.
Kelterer
,
M. E.
,
Pecnik
,
R.
, and
Sanz
,
W.
,
2010
, “
Computation of Laminar-Turbulent Transition in Turbumachinery Using the Correlation Based γ- Re θ Transition Model
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air, Paper No. GT2010-22207
.
3.
Menter
,
F. R.
,
Smirnov
,
P. E.
,
Liu
,
T.
, and
Avancha
,
R.
,
2015
, “
A One-Equation Local Correlation-Based Transition Model
,”
Flow Turbul. Combust.
,
95
(
4
), pp.
583
619
. 10.1007/s10494-015-9622-4
4.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2011
, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
,”
ASME J. Turbomach.
,
133
(
3
), p.
031016
. 10.1115/1.4001237
5.
Dick
,
E.
, and
Kubacki
,
S.
,
2017
, “
Transition Models for Turbomachinery Boundary Layer Flows: A Review
,”
Int. J. Turbomach. Propul. Power
,
2
(
2
), p.
4
. 10.3390/ijtpp2020004
6.
Solomon
,
W.
,
Walker
,
G.
, and
Gostelow
,
J.
,
1996
, “
Transition Length Prediction for Flows With Rapidly Changing Pressure Gradients
,”
ASME J. Turbomach.
,
113
(
4
), pp.
744
751
. 10.1115/1.2840930
7.
Steelant
,
J.
, and
Dick
,
E.
,
1996
, “
Modelling of Bypass Transition With Conditioned Navier–Stokes Equations Coupled to an Intermittency Transport Equation
,”
Int. J. Numer. Methods Fluids
,
23
(
3
), pp.
193
220
. 10.1002/(SICI)1097-0363(19960815)23:3<193::AID-FLD415>3.0.CO;2-2
8.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
. 10.2514/1.42362
9.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
7
), pp.
509
536
. 10.1115/1.2929110
10.
Hatman
,
A.
, and
Wang
,
T.
,
1999
, “
A Prediction Model for Separated-Flow Transition
,”
ASME J. Turbomach.
,
121
(
3
), pp.
594
602
. 10.1115/1.2841357
11.
Suzen
,
Y.
,
Huang
,
P.
,
Ashpis
,
D.
,
Volino
,
R.
,
Corke
,
T.
,
Thomas
,
F.
,
Huang
,
J.
,
Lake
,
J.
, and
King
,
P.
,
2007
, “
A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines Under a Wide Range of Operating Conditions
,”
ASME J. Turbomach.
,
129
(
3
), pp.
527
541
. 10.1115/1.2218888
12.
Gostelow
,
J.
,
Blunden
,
A.
, and
Walker
,
G.
,
1994
, “
Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
,
116
(
3
), pp.
392
404
. 10.1115/1.2929426
13.
Dellacasagrande
,
M.
,
Guida
,
R.
,
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2019
, “
Correlations for the Prediction of Intermittency and Turbulent Spot Production Rate in Separated Flows
,”
ASME J. Turbomach.
,
141
(
3
), p.
031003
. 10.1115/1.4042066
14.
Volino
,
R. J.
,
2002
, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions—Part 1: Mean Flow and Turbulence Statistics
,”
ASME J. Turbomach.
,
124
(
4
), pp.
645
655
. 10.1115/1.1506938
15.
Samson
,
A.
, and
Sarkar
,
S.
,
2016
, “
Effects of Free-Stream Turbulence on Transition of a Separated Boundary Layer Over the Leading-Edge of a Constant Thickness Airfoil
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021202
. 10.1115/1.4031249
16.
Simoni
,
D.
,
Lengani
,
D.
, and
Guida
,
R.
,
2016
, “
A Wavelet-Based Intermittency Detection Technique From PIV Investigations in Transitional Boundary Layers
,”
Exp. Fluids
,
57
(
9
), p.
145
. 10.1007/s00348-016-2231-8
17.
Simoni
,
D.
,
Lengani
,
D.
,
Dellacasagrande
,
M.
,
Kubacki
,
S.
, and
Dick
,
E.
,
2019
, “
An Accurate Data Base on Laminar-to-Turbulent Transition in Variable Pressure Gradient Flows
,”
Int. J. Heat Fluid Flow
,
77
, pp.
84
97
. 10.1016/j.ijheatfluidflow.2019.02.008
18.
Simoni
,
D.
,
Lengani
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Dellacasagrande
,
M.
,
2017
, “
Inspection of the Dynamic Properties of Laminar Separation Bubbles: Free-Stream Turbulence Intensity Effects for Different Reynolds Numbers
,”
Exp. Fluids
,
58
(
6
), p.
66
. 10.1007/s00348-017-2353-7
19.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Zaki
,
T.
,
2012
, “
Large Eddy Simulation of Transitional Separated Flow Over a Flat Plate and a Compressor Blade
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
19
44
. 10.1007/s10494-011-9353-0
20.
Istvan
,
M. S.
, and
Yarusevych
,
S.
,
2018
, “
Effects of Free-Stream Turbulence Intensity on Transition in a Laminar Separation Bubble Formed Over an Airfoil
,”
Exp. Fluids
,
59
(
3
), p.
289
. 10.1007/s00348-018-2511-6
21.
Bellows
,
W.
, and
Mayle
,
R.
,
1986
, “
Heat Transfer Downstream of a Leading Edge Separation Bubble
,”
ASME J. Turbomach.
,
108
(
1
), pp.
131
136
. 10.1115/1.3262012
You do not currently have access to this content.