Abstract

The internal cooling passages of gas turbine blades mostly have varying aspect ratios from one passage to another. However, there are limited data available in the open literature that used a reduced cross section and aspect ratio (AR), after the tip turn. Therefore, the current study presents heat transfer and pressure drop of three different α = 45 deg profiled rib orientations, typical parallel (usual), reversed parallel (unusual), and crisscross patterns in a rotating two-pass rectangular channel with AR = 4:1 and 2:1 in the first radially outward flow and second radially inward flow passages, respectively. For each rib orientation, regional averaged heat transfer results are obtained for both the flow passages with the Reynolds number ranging from 10,000 to 70,000 for the first passage and 16,000 to 114,000 for the second passage with a rotational speed range of 0–400 rpm. This results in the highest rotation number of 0.39 and 0.16 for the first and second passage respectively. The effects of rib orientation, aspect ratio variation, 180-deg tip turn, and rotation number on the heat transfer and pressure drop will be addressed. According to the results, for usual, unusual and crisscross rib patterns, increasing rotation number causes the heat transfer to decrease on the leading surface and increase on the trailing surface for the first passage and vice versa for the second passage. The overall heat transfer enhancement of the usual and unusual rib patterns is higher than the crisscross one. In terms of the pressure losses, the crisscross rib pattern has the lowest and the usual rib pattern has the highest-pressure loss coefficients. When pressure loss and heat transfer enhancement are both taken into account together, the crisscross or unusual rib pattern might be an option to use in the internal cooling method. Therefore, the results can be useful for the turbine blade internal cooling design and heat transfer analysis.

References

1.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer
,
140
(
11
), p.
113001
. 10.1115/1.4039644
2.
Han
,
J. C.
,
1984
, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls
,”
ASME J. Heat Transfer
,
106
(
4
), pp.
774
781
. 10.1115/1.3246751
3.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
(
3
), pp.
628
635
. 10.1115/1.3239782
4.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R. J.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
. 10.1016/0017-9310(92)90309-G
5.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
321
328
. 10.1115/1.3250487
6.
Korotky
,
G. J.
, and
Taslim
,
M. E.
,
1998
, “
Rib Heat Transfer Coefficient Measurement in a Rib- Roughened Square Passage
,”
ASME J. Turbomach.
,
120
(
2
), pp.
376
385
. 10.1115/1.2841416
7.
Han
,
J. C.
,
Park
,
J. S.
, and
Ibrahim
,
M. Y.
,
1986
, “Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters,”
National Aeronautics and Space Administration, Scientific and Technical Information Branch
,
Washington, DC
.
8.
Ekkad
,
S. V.
,
Huang
,
Y.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators and Bleed Holes
,”
Int. J. Heat Mass Transfer
,
41
(
23
), pp.
3781
3791
. 10.1016/S0017-9310(98)00099-4
9.
Schabacker
,
J.
,
Bölcs
,
A.
, and
Johnson
,
B. V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180 deg Bend
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition.Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Stockholm, Sweden
,
June 2–5
, p.
V004T09A094
.
ASME
.10.1115/98-GT-544
10.
Metzger
,
D. E.
,
Plevich
,
C. V.
, and
Fan
,
C. S.
,
1984
, “
Pressure Loss Through Sharp 180 Deg Turns in Smooth Rectangular Channels
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
677
681
. 10.1115/1.3239623
11.
Metzger
,
D. E.
, and
Sahm
,
M. K.
,
1986
, “
Heat Transfer Around Sharp 180-deg Turns in Smooth Rectangular Channels
,”
ASME J. Heat Transfer
,
108
(
3
), pp.
500
506
. 10.1115/1.3246961
12.
Han
,
J. C.
, and
Zhang
,
P. P.
,
1991
, “
Effect of Rib-Angle Orientation on Local Mass Transfer Distribution in a Three-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
,
113
(
1
), pp.
123
130
. 10.1115/1.2927730
13.
Elfert
,
M.
,
1994
, “
The Effect of Rotation and Buoyancy on Flow Development in a Rotating Circular Coolant Channel With Radially Inward Flow
,”
Exp. Therm. Fluid. Sci.
,
9
(
2
), pp.
206
214
. 10.1016/0894-1777(94)90113-9
14.
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
,
1999
, “
Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage With Smooth Walls
,”
ASME J. Turbomacher
,
121
(
4
), pp.
651
662
. 10.1115/1.2836717
15.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of The Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
(
3
), pp.
590
595
. 10.1115/1.2836706
16.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1991
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
42
51
. 10.1115/1.2927736
17.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
912
920
. 10.1115/1.2911387
18.
Iacovides
,
H. H.
,
Jackson
,
D. C.
,
Ji
,
H. H.
,
Kelemenis
,
G. G.
,
Launder
,
B. E.
, and
Nikas
,
K. K.
,
1998
, “
LDA Study of the Flow Development Through an Orthogonally Rotating U-Bend of Strong Curvature and Rib-Roughened Walls
,”
ASME J. Turbomach.
,
120
(
2
), pp.
386
391
. 10.1115/1.2841417
19.
Tse
,
D. G. N.
, and
Steuber
,
G. D.
,
1997
, “
Flow in a Rotating Square Serpentine Coolant Passage With Skewed Trips
,”
Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
ASME
Paper No. 97-GT-529.
20.
Taslim
,
M. E.
,
Bondi
,
L. A.
, and
Kercher
,
D. M.
,
1991
, “
An Experimental Investigation of Heat Transfer in an Orthogonally Rotating Channel Roughened With 45 deg Criss-Cross Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
346
353
. 10.1115/1.2927882
21.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
(
4
), pp.
847
857
. 10.1115/1.2928038
22.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) With 45 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
(
1
), pp.
164
174
. 10.1115/1.1791649
23.
Lei
,
J.
,
Han
,
J. C.
, and
Huh
,
M.
,
2012
, “
Effect of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (AR = 2:1) at High Rotation Numbers
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091901
. 10.1115/1.4006298
24.
Saha
,
A. K.
, and
Acharya
,
S.
,
2005
, “
Unsteady RANS Simulation of Turbulent Flow and Heat Transfer in Ribbed Coolant Passages of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
48
(
23
), pp.
4704
4725
. 10.1016/j.ijheatmasstransfer.2005.05.030
25.
Jenkins
,
S. C.
,
Zehnder
,
F.
,
Shevchuk
,
I. V.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Schnieder
,
M.
,
2012
, “
The Effects of Ribs and Tip Wall Distance on Heat Transfer for a Varying Aspect Ratio Two-Pass Ribbed Internal Cooling Channel
,”
ASME J. Turbomach.
,
135
(
2
), p.
021001
. 10.1115/1.4006584
26.
Eifel
,
M.
,
Caspary
,
V.
,
Hönen
,
H.
, and
Jeschke
,
P.
,
2010
, “
Experimental and Numerical Analysis of Gas Turbine Blades With Different Internal Cooling Geometries
,”
ASME J. Turbomach.
,
133
(
1
), p.
011018
. 10.1115/1.4000541
27.
Schüler
,
M.
,
Dreher
,
H. M.
,
Neumann
,
S. O.
,
Weigand
,
B.
, and
Elfert
,
M.
,
2011
, “
Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-Similar Two-Pass Internal Cooling Channel With Smooth and Ribbed Walls
,”
ASME J. Turbomach.
,
134
(
2
), p.
021021
. 10.1115/1.4003086
28.
Rallabandi
,
A.
,
Lei
,
J.
,
Han
,
J.-C.
,
Azad
,
S.
, and
Lee
,
C.-P.
,
2014
, “
Heat Transfer Measurements in Rotating Blade–Shape Serpentine Coolant Passage With Ribbed Walls at High Reynolds Numbers
,”
ASME J. Turbomach.
,
136
(
9
), p.
091004
. 10.1115/1.4026945
29.
Chen
,
A. F.
,
Shiau
,
C.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2018
, “
Heat Transfer in a Rotating Two-Pass Rectangular Channel Featuring Reduced Cross-Sectional Area After Tip Turn (AR = 4:1 to 2:1) With Profiled 60 Deg Angled Ribs
,”
ASME J. Turbomach.
,
141
(
7
), p.
071008
. 10.1115/1.4042653
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.