Abstract

Experiments and numerical simulations under stationary and rotating conditions have been conducted to investigate turbulent flow and heat transfer characteristics of innovative guiding pin fin arrays in a wedge-shaped channel, which models the internal cooling passages for modern gas turbine blade trailing edge. The Reynolds number range is 10,000–80,000, and the inlet rotation number range is 0–0.46. With the increase of Reynolds number, the enhancement of heat transfer performance of the channel with guiding pin fin arrays is significantly higher than that of the channel with conventional circular pin fin arrays. At the highest Reynolds number of Re = 80,000, the overall Nusselt number of the channel with guiding pin fin arrays is about 33.7% higher than that of the channel with circular pin fin arrays under the stationary condition and is about 23.0% higher than the latter under the rotating conditions. At the highest inlet rotation number of Ro = 0.46, the heat transfer difference between the trailing side and leading side of the channel is significantly lower with the guiding pin fin arrays than with the circular pin fin arrays. Through both the experiments and numerical simulations, it is found that the heat transfer uniformity of the endwall is significantly improved by the guiding pin fin arrays, and the rotation presents appreciably less influence on the heat transfer distribution with the guiding pin fin arrays than with the circular pin fin arrays. Moreover, the novel guiding pin fins provide more reasonable flow distribution in the wedge-shaped channel and produce obviously higher heat transfer performance in the tip region of the channel, which is significantly advantageous for a better design of gas turbine blade trailing edge internal cooling.

References

1.
Tarchi
,
L.
,
Facchini
,
B.
, and
Zecchi
,
S.
,
2008
, “
Experimental Investigation of Innovative Internal Trailing Edge Cooling Configurations With Pentagonal Arrangement and Elliptic Pin Fin
,”
Int. J. Rotating Mach.
,
2008
, pp.
1
10
.
2.
Choi
,
J.-h.
,
Mhetras
,
S.
,
Han
,
J.-C.
,
Lau
,
S. C.
, and
Rudolph
,
R.
,
2008
, “
Film Cooling and Heat Transfer on Two Cutback Trailing Edge Models With Internal Perforated Blockages
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
1
), p.
012201
.
3.
Kruekels
,
J.
,
Naik
,
S.
,
Lerch
,
A.
, and
Sedlov
,
A.
,
2014
, “
Heat Transfer in a Vane Trailing Edge Passage With Conical Pins and Pin-Turbulator Integrated Configurations
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 5A: Heat Transfer
,
Düsseldorf, Germany
,
June 16–20
, p.
V05AT12A015
, GT2014-25522.
4.
Effendy
,
M.
,
Yao
,
Y.
,
Sugati
,
D.
, and
Tjahjono
,
T.
,
2019
, “
Numerical Study of Pin-Fin Cooling on Gas Turbine Blades
,”
Proceedings of AIP Conference Proceedings
,
Surakarta, Indonesia
, AIP Publishing LLC, p.
060022
.
5.
Otto
,
M.
,
Fernandez
,
E.
,
Kapat
,
J. S.
,
Ricklick
,
M.
, and
Mhetras
,
S.
,
2017
, “
Rib Turbulated Pin Fin Array for Trailing Edge Cooling
,”
Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition
,
Charlotte, NC
, p.
V05AT16A001
, GT2017-63044.
6.
Lau
,
S. C.
,
Han
,
J. C.
, and
Kim
,
Y. S.
,
1989
, “
Turbulent Heat Transfer and Friction in Pin Fin Channels With Lateral Flow Ejection
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
1
), pp.
51
58
.
7.
Cunha
,
F. J.
, and
Chyu
,
M. K.
,
2006
, “
Trailing-Edge Cooling for Gas Turbines
,”
J. Propul. Power
,
22
(
2
), pp.
286
300
.
8.
Beniaiche
,
A.
,
Ghenaiet
,
A.
, and
Facchini
,
B.
,
2016
, “
Experimental and Numerical Investigations of Internal Heat Transfer in an Innovative Trailing Edge Blade Cooling System: Stationary and Rotation Effects, Part 1—Experimental Results
,”
Heat and Mass Transfer
,
53
(
2
), pp.
475
490
.
9.
Beniaiche
,
A.
,
Ghenaiet
,
A.
,
Carcasci
,
C.
, and
Facchini
,
B.
,
2015
, “
Heat Transfer Investigation in new Cooling Schemes of a Stationary Blade Trailing Edge
,”
Appl. Therm. Eng.
,
87
, pp.
816
825
.
10.
Beniaiche
,
A.
,
Ghenaiet
,
A.
,
Carcasci
,
C.
, and
Facchini
,
B.
,
2016
, “
Experimental and Numerical Investigations of Internal Heat Transfer in an Innovative Trailing Edge Blade Cooling System: Stationary and Rotation Effects, Part 2: Numerical Results
,”
Heat and Mass Transfer
,
53
(
2
), pp.
491
505
.
11.
Bianchini
,
C.
,
Facchini
,
B.
,
Simonetti
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2012
, “
Numerical and Experimental Investigation of Turning Flow Effects on Innovative Pin Fin Arrangements for Trailing Edge Cooling Configurations
,”
ASME J. Turbomach.
,
134
(
2
), p.
021005
.
12.
Bianchini
,
C.
,
Facchini
,
B.
,
Simonetti
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
, “
Numerical and Experimental Investigation of Turning Flow Effects on Innovative Pin Fin Arrangements for Trailing Edge Cooling Configurations
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
, pp.
593
604
.
13.
Pardeshi
,
I.
,
Shih
,
T. I. P.
,
Bryden
,
K. M.
,
Ames
,
R.
,
Dennis
,
R.
,
Ding
,
S.
,
Xu
,
G.
,
Deng
,
H.
, and
Lu
,
R.
,
2015
, “
Flow and Heat Transfer in a Rotating and Non-Rotating Wedge-Shaped Cooling Passage with Ribs and Pin Fins
,”
53rd AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
, p.
1444
.
14.
Shen
,
B.
,
Li
,
Y.
,
Yan
,
H.
,
Boetcher
,
S. K. S.
, and
Xie
,
G.
,
2019
, “
Heat Transfer Enhancement of Wedge-Shaped Channels by Replacing pin Fins with Kagome Lattice Structures
,”
Int. J. Heat Mass Transfer
,
141
, pp.
88
101
.
15.
Li
,
Y.
,
Deng
,
H.
,
Tao
,
Z.
,
Xu
,
G.
, and
Chen
,
Y.
,
2017
, “
Heat Transfer Characteristics in a Rotating Trailing Edge Internal Cooling Channel with two Coolant Inlets
,”
Int. J. Heat Mass Transfer
,
105
, pp.
220
229
.
16.
Li
,
Y.
,
Xu
,
G.
,
Deng
,
H.
,
Qiu
,
L.
, and
Yu
,
X.
,
2016
, “
Effects of Coolant Mass Flow Rate Ratio on Heat Transfer in a two-Inlet Rotating Wedge-Shaped Channel
,”
Int. J. Heat Mass Transfer
,
96
, pp.
353
361
.
17.
Deng
,
H.
,
Li
,
L. A.
,
Zhu
,
J.
,
Tao
,
Z.
,
Tian
,
S.
, and
Yang
,
Z.
,
2018
, “
Heat Transfer of a Rotating two-Inlet Trailing Edge Channel with Lateral Fluid Extractions
,”
Int. J. Therm. Sci.
,
125
, pp.
313
323
.
18.
Deng
,
H.
,
Cheng
,
Y.
,
Li
,
Y.
,
Ni
,
B.
, and
Qiu
,
L.
,
2017
, “
Heat Transfer in a two-Inlet Rotating Wedge-Shaped Channel with Various Locations of the Second Inlet
,”
Int. J. Heat Mass Transfer
,
106
, pp.
25
34
.
19.
Deng
,
H.
,
Han
,
Y.
,
Tao
,
Z.
,
Li
,
Y.
, and
Wang
,
J.
,
2017
, “
Heat Transfer in a Rotating Trailing Edge Wedge-Shaped Cooling Channel with two Inflow Forms
,”
Exp. Therm. Fluid. Sci.
,
88
, pp.
530
541
.
20.
Liu
,
Y. H.
,
Huh
,
M.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge Shaped Cooling Channels With Slot Ejection Under High Rotation Numbers
,”
Proceedings of the ASME Turbo Expo 2008
,
Berlin, Germany
, Vol.
4
, pp.
311
320
.
21.
Liu
,
Y.-H.
,
Huh
,
M.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2009
, “
Heat Transfer in Trailing-Edge Channels with Slot Ejection Under High Rotation Numbers
,”
J. Thermophys. Heat Transfer
,
23
(
2
), pp.
305
315
.
22.
Wright
,
L. M.
,
Liu
,
Y.-H.
,
Han
,
J.-C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
7
), p.
071701
.
23.
Qiu
,
L.
,
Deng
,
H. W.
, and
Tao
,
Z.
,
2012
, “
Effect of Channel Orientation in a Rotating Wedge-Shaped Cooling Channel with Pin Fins and Ribs
,”
Proceedings of the Asme Turbo Expo 2012
,
Copenhagen, Denmark
, Vol.
4
, pp.
173
183
, Pts a and B, GT2012-68439.
24.
Rallabandi
,
A. P.
,
Liu
,
Y.-H.
, and
Han
,
J.-C.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
.
25.
Metheron
,
G.
,
1963
, “
Principles of Geostatistics, Economic Geology
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.