Abstract

This work is an experimental study of film cooling effectiveness on two real-scale turbine vanes in a three-vane annular cascade. The cascade is connected to a high-flow steady compressor to provide the mainstream flow. The inlet velocity is maintained at 35 m/s at the centerline of the annular cascade. Two heavily cooled, real-scale turbine vanes are tested with cooling holes on the pressure (PS) and suction (SS) surfaces. Vane 1 has 645 cooling holes distributed around the vane. Vane 2 has an additional two rows of holes at the near leading edge SS of the vane. The mass flow ratio (MFR) is varied from 3.12% to 4.82%. Increasing the MFR increases film effectiveness. The introduction of additional rows of cooling holes resulted in the re-distribution of coolant from the pressure surface to the suction surface. The re-distribution of coolant is primarily due to the additional coolant supplied to the suction surface for vane 2. This study provides designers with more insight into how to place rows of cooling holes to have improved effectiveness.

References

1.
Han
,
J.-C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
113001
.
2.
Giller
,
L.
, and
Schiffer
,
H.-P.
,
2012
, “
Interactions Between the Combustor Swirl and the High-Pressure Stator of a Turbine
,” ASME Paper No. GT2012-69157.
3.
Qureshi
,
I.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2012
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
4.
Lerch
,
A.
,
Bauer
,
R.
,
Krueckels
,
J.
, and
Henze
,
M.
,
2020
, “
Impact of a Combustor–Turbine Interface on Turbine Vane Aerodynamics and Film Cooling
,”
ASME J. Turbomach.
,
142
(
7
), p.
071007
.
5.
Anthony
,
R. J.
,
Clark
,
J. P.
,
Finnegan
,
J.
, and
Johnson
,
J. J.
,
2019
, “
3D Heat Transfer Assessment of Full-Scale Inlet Vanes With Surface-Optimized Film Cooling: Part 1—Experimental Results
,” ASME Paper No. GT2019-91919.
6.
Shiau
,
C.-C.
,
Chen
,
A. F.
,
Han
,
J.-C.
,
Azad
,
S.
, and
Lee
,
C.-P.
,
2017
, “
Film Cooling Effectiveness Comparison on Full-Scale Turbine Vane Endwalls Using Pressure-Sensitive Paint Technique
,”
ASME J. Turbomach.
,
140
(
2
), p.
021009
.
7.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
4
), pp.
620
627
.
8.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
9.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
,
1998
, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
(
4
), pp.
799
807
.
10.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2000
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
.
11.
Gao
,
Z.
,
Narzary
,
D. P.
,
Mhetras
,
S.
, and
Han
,
J.-C.
,
2008
, “
Full-Coverage Film Cooling for A Turbine Blade With Axial-Shaped Holes
,”
J. Thermophys. Heat Transfer
,
22
(
1
), pp.
50
61
.
12.
Mhetras
,
S.
,
Han
,
J.-C.
, and
Rudolph
,
R.
,
2012
, “
Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectivenessfor a Gas Turbine Blade
,”
ASME J. Turbomach.
,
134
(
1
), p.
011004
.
13.
Narzary
,
D. P.
,
Liu
,
K.-C.
,
Rallabandi
,
A. P.
, and
Han
,
J.-C.
,
2011
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
14.
Dyson
,
T. E.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2013
, “
Adiabatic and Overall Effectiveness for a Fully Cooled Turbine Vane
,” ASME Paper No. GT2013-94928.
15.
Wu
,
J.
,
Zhang
,
L.
,
Cheng
,
L.-J.
,
Jiang
,
R.
,
Fu
,
Z.-Y.
, and
Zhu
,
H.-R.
,
2018
, “
An Experimental Investigation of Full-Coverage Film Cooling Characteristics of a Turbine Guide Vane
,” ASME Paper No. GT2018-76088.
16.
Yao
,
C.-Y.
,
Zhu
,
H.-R.
,
Liu
,
C.-L.
,
Zhang
,
B.-L.
, and
Li
,
X.-L.
,
2020
, “
Film Cooling and Heat Transfer Performance of a Fully-Cooled Turbine Vane at Varied Density Ratios and Mass Flow Ratios
,” ASME Paper No. GT2020-15101.
17.
Zhang
,
S.-Q.
,
Liu
,
C.-L.
,
Guo
,
Q.-L.
,
Liang
,
D.-P.
, and
Zhang
,
F.
,
2020
, “
Experimental Study of Full Coverage Film Cooling Effectiveness for a Turbine Blade With Compound Shaped Holes
,” ASME Paper No. GT2020-15110.
18.
Liu
,
K.
,
Yang
,
S.-F.
, and
Han
,
J.-C.
,
2014
, “
Influence of Coolant Density on Turbine Blade Film-Cooling With Axial and Compound Shaped Holes
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
4
), p.
044501
.
19.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
2
.
20.
Kline
,
S. J.
, and
McClintock
,
E.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
21.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.