Abstract

An unsteady model has been developed for evaluating deposition behavior and aerodynamic performance degradation under the impact of hot streak. The results reveal that hot streak alters the force exerted by the mainstream, impacting the impact behavior of particles. For particles of 1 μm, total impact numbers for the uniform inlet case, vane-aligned case, and passage-aligned case are 431, 1244, and 325 on the pressure side. The hot streak clocking effect significantly affects particle temperature and deposit formation. In the vane-aligned case, the deposition mass fraction on the suction side increases from 13.8% in the uniform inlet case to 18.7%, while in the passage-aligned case, it decreases to 5.4%. Furthermore, the hot streak clocking effect leads to increased total pressure losses and a decline in aerodynamic performance, especially in the vane-aligned case. After 4000 h of deposition, the dynamic pressure loss in the vane-aligned case increases from 3.7% in the uniform inlet case to 4.3%.

References

1.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
di Mare
,
L.
,
Montomoli
,
F.
, and
Pinelli
,
M.
,
2019
, “
Generalization of Particle Impact Behavior in Gas Turbine via Non-Dimensional Grouping
,”
Prog. Energy Combust. Sci.
,
74
, pp.
103
151
.
2.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
3.
Poerschke
,
D. L.
,
Jackson
,
R. W.
, and
Levi
,
C. G.
,
2017
, “
Silicate Deposit Degradation of Engineered Coatings in Gas Turbines: Progress Toward Models and Materials Solutions
,”
Annu. Rev. Mater. Res.
,
47
(
1
), pp.
297
330
.
4.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of ASME Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.
5.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
Pinelli
,
M.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2018
, “
Gas Turbine Fouling Tests: Review, Critical Analysis, and Particle Impact Behavior Map
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032601
.
6.
Wang
,
J.
,
Vujanović
,
M.
, and
Sunden
,
B.
,
2018
, “
A Review of Multiphase Flow and Deposition Effects in Film-Cooled Gas Turbines
,”
Therm. Sci
,
22
(
5
), pp.
1905
1921
.
7.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas. Turbines. Power
,
134
(
3
), p.
032401
.
8.
Brun
,
K.
,
Nored
,
M.
, and
Kurz
,
R.
,
2011
, “
Particle Transport Analysis of Sand Ingestion in Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012402
.
9.
Hamed
,
A. A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Das
,
K.
, and
Arora
,
P.
,
2004
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
.
10.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2012
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach.
,
135
(
2
), p.
021033
.
11.
Shin
,
H. S.
, and
Maekawa
,
I.
,
1995
, “
Characterization of Particle Impact Damage and Residual Strength Degradation Behaviors in Structural Ceramics
,”
JSME Int. J., Ser. A
,
38
(
1
), pp.
116
122
.
12.
Lee
,
D. W.
,
Kim
,
H. J.
,
Kim
,
Y. H.
,
Yun
,
Y. H.
, and
Nam
,
S. M.
,
2011
, “
Growth Process of α-Al2O3 Ceramic Films on Metal Substrates Fabricated at Room Temperature by Aerosol Deposition
,”
J. Am. Ceram. Soc.
,
94
(
9
), pp.
3131
3138
.
13.
Dunn
,
M. G.
,
Padova
,
C.
,
Moller
,
J. E.
, and
Adams
,
R. M.
,
1987
, “
Performance Deterioration of a Turbofan and a Turbojet Engine Upon Exposure to a Dust Environment
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
336
343
.
14.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.
15.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2004
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
,
127
(
3
), pp.
462
470
.
16.
Bons
,
J. P.
,
Wammack
,
J. E.
,
Crosby
,
J.
,
Fletcher
,
D.
, and
Fletcher
,
T. H.
,
2008
, “
Evolution of Surface Deposits on a High-Pressure Turbine Blade—Part II: Convective Heat Transfer
,”
ASME J. Turbomach.
,
130
(
2
), p.
021021
.
17.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2007
, “
Effects of Particle Size, Gas Temperature and Metal Temperature on High Pressure Turbine Deposition in Land Based Gas Turbines From Various Synfuels
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
, pp.
1365
1376
.
18.
Lewis
,
S.
,
Barker
,
B.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2011
, “
Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes
,”
ASME J. Turbomach.
,
133
(
3
), p.
031003
.
19.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2012
, “
Simulations of Multiphase Particle Deposition on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
134
(
2
), p.
011003
.
20.
Mensch
,
A.
, and
Thole
,
K.
,
2015
, “
Simulations of Multiphase Particle Deposition on a Gas Turbine Endwall With Impingement and Film Cooling
,”
ASME J. Turbomach.
,
137
(
11
), p.
111002
.
21.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2020
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition With Application to a Leading Edge Turbine Vane
,”
Turbo Expo: Power for Land, Sea, and Air
,
Glasgow, UK
, pp.
615
626
.
22.
Singh
,
S.
, and
Tafti
,
D.
,
2015
, “
Particle Deposition Model for Particulate Flows at High Temperatures in Gas Turbine Components
,”
Int. J. Heat Fluid Flow
,
52
, pp.
72
83
.
23.
Senior
,
C. L.
, and
Srinivasachar
,
S.
,
1995
, “
Viscosity of ash Particles in Combustion Systems for Prediction of Particle Sticking
,”
Energ. Fuel
,
9
(
2
), pp.
277
283
.
24.
Barker
,
B.
,
Casaday
,
B.
,
Shankara
,
P.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2013
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part ii: Computational Modeling
,”
ASME J. Turbomach.
,
135
(
1
), pp.
011015
.
25.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2000
, “
Effect of Turbulence Modeling on Particle Dispersion and Deposition on Compressor and Turbine Blade Surfaces
,”
Turbo Expo: Power for Land, Sea, and Air
,
Munich, Germany
.
26.
Gökoğlu
,
S. A.
, and
Rosner
,
D. E.
,
1984
, “
Comparisons of Rational Engineering Correlations of Thermophoretically-Augmented Particle Mass Transfer With STAN5-Predictions for Developing Boundary Layers
,”
ASME 1984 International Gas Turbine Conference and Exhibit
,
Amsterdam, The Netherlands
.
27.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “
Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
, pp.
1035
1043
.
28.
Lu
,
H.
, and
Quan
,
Y.
,
2021
, “
A CFD Study of Particle Deposition in Three-Dimensional Heat Exchange Channel Based on an Improved Deposition Model
,”
Int. J. Heat Mass Transfer
,
178
, pp.
121633
.
29.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microsphers
,”
Aerosp. Sci. Technol.
,
16
(
1
), pp.
51
64
.
30.
El-Batsh
,
H.
,
2001
, “Modeling Particle Deposition on Compressor and Turbine Blade Surfaces,”
Vienna University of Technology
.
31.
Ai
,
W.
,
2009
,
Deposition of Particulate From Coal-Derived Syngas on Gas Turbine Blades Near Film Cooling Holes
,
Brigham Young University
.
32.
Ai
,
W.
, and
Fletcher
,
T. H.
,
2012
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041020
.
33.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2018
, “
EBFOG: Deposition, Erosion, and Detachment on High-Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
140
(
6
), p.
061001
.
34.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
35.
Hao
,
Z.
,
Yang
,
X.
, and
Feng
,
Z.
,
2023
, “
Unsteady Modeling of Particle Deposition Effects on Aerodynamics and Heat Transfer in Turbine Stator Passages With Mesh Morphing
,”
Int. J. Therm. Sci.
,
190
, pp.
108326
.
36.
Wang
,
Z.
,
Wang
,
D.
,
Wang
,
Z.
, and
Feng
,
Z.
,
2018
, “
Heat Transfer Analyses of Film-Cooled HP Turbine Vane Considering Effects of Swirl and Hot Streak
,”
Appl. Therm. Eng.
,
142
, pp.
815
829
.
37.
Griffini
,
D.
,
Insinna
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2015
, “
Clocking Effects of Inlet Nonuniformities in a Fully Cooled High-Pressure Vane: A Conjugate Heat Transfer Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021006
.
38.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2011
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.
39.
Qureshi
,
I.
,
Smith
,
A. D.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2012
, “
Effect of Temperature Nonuniformity on Heat Transfer in an Unshrouded Transonic HP Turbine: An Experimental and Computational Investigation
,”
ASME J. Turbomach.
,
134
(
1
), p.
011005
.
40.
Simone
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Chana
,
K. S.
,
Qureshi
,
I.
, and
Povey
,
T.
,
2011
, “
Analysis on the Effect of a Nonuniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,”
ASME J. Turbomach.
,
134
(
1
), p.
011012
.
41.
Hylton
,
L.
,
Mihelc
,
M.
,
Turner
,
E.
,
Nealy
,
D.
, and
York
,
R.
,
1983
,
Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surfaces of Turbine Vanes
.
42.
Koupper
,
C.
,
2015
,
Unsteady Multi-Component Simulations Dedicated to the Impact of the Combustion Chamber on the Turbine of Aeronautical GasTurbines
,
Institut de mécanique des fluides de Toulouse
.
You do not currently have access to this content.